Synthesis and Agonist Activity of Cyclic ADP-Ribose Analogues with Substitution of the Northern Ribose by Ether or Alkane Chains

Jianfeng Xu, \# Zhenjun Yang, \# Werner Dammermann, ${ }^{\dagger}$ Liangren Zhang,, ${ }^{, \#}$ Andreas H. Guse, ${ }^{\dagger}$ and Li-he Zhang*,\#
State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100083, China, and Center of Experimental Medicine, Institute of Biochemistry and Molecular Biology I: Cellular Signal Transduction, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany

Received March 20, 2006
Novel analogues of cADPR with adenine as base and ether (10a) or different alkane chain (10b-d) substitutions of the northern ribose were synthesized from protected imidazole nucleoside $\mathbf{1}$ in good yields. The pharmacological activities of cyclic inosine diphosphoribose ether (cIDPRE) and the compounds (10ad) were analyzed in intact human Jurkat T-lymphocytes. The results indicate that the analogues 10a-d permeate the plasma membrane and are weak agonists of the cADPR/ryanodine receptor signaling system in intact human Jurkat T cells. They are the first membrane-permeant and biologically active cADPR analogues that contain ether or alkane bridges instead of the northern ribose and retain adenine as its base.

Introduction

Cyclic ADP-ribose (cADPR^{a}) is a universal Ca^{2+} mobilizing second messenger first identified in the sea urchin egg system. ${ }^{1,2}$ Since its discovery, numerous cell systems have been described to make use of the cADPR/ryanodine receptor $(\mathrm{RyR}) / \mathrm{Ca}^{2+}$ signaling system to control Ca^{2+}-dependent cellular responses such as fertilization, secretion, contraction, proliferation, and many more. ${ }^{3,4}$

Because of the importance of the $\mathrm{cADPR} / \mathrm{RyR} / \mathrm{Ca}^{2+}$ signaling system in cell regulation, analogues of cADPR have been synthesized (Figure 1) and their biological activity has been tested. The first and still very important analogues were derivatized in the 8 -position of adenine, e.g., $8-\mathrm{NH}_{2}-\mathrm{cADPR}$ or 8 -Br-cADPR. ${ }^{5}$ These compounds turned out to be antagonists of cADPR. ${ }^{5}$ In the years following 1993 many more cADPR analogues with modifications in the (i) southern ribose, e.g., 2^{\prime}-phospho- ${ }^{6,7}$ or $3^{\prime}-\mathrm{OCH}_{3}-,{ }^{8}$ or the (ii) northern ribose, e.g., $2^{\prime \prime}-\mathrm{NH}_{2}-,{ }^{9}$ or the (iii) pyrophosphate bridge, e.g., a triphosphate bridge in cyclic adenosine triphosphoribose ${ }^{10}$ have been synthesized and evaluated for their biological activity. Furthermore, either the southern or the northern ribose was replaced by the corresponding carbocyclic derivatives, termed cyclic aristeromycin diphosphoribose ${ }^{11}$ and cyclic adenosine diphosphocar-

[^0]
cADPR, $\quad X=N H, Y_{1}=Y_{2}=O, R_{1}=R_{2}=R_{3}=H, R_{4}=O H$
cIDPR, $\quad X=O, \quad Y_{1}=Y_{2}=O, R_{1}=R_{2}=R_{3}=H, R_{4}=O H$
8-NH2-cADPR, $X=N H, Y_{1}=Y_{2}=O, R_{1}=\mathrm{NH}_{2}, R_{2}=\mathrm{R}_{3}=H, R_{4}=\mathrm{OH}$
8-Br-cADPR, $\quad X=N H, Y_{1}=Y_{2}=O, R_{1}=B r, R_{2}=R_{3}=H, R_{4}=O H$
2'-phospho-cADPR, $\quad \mathrm{X}=\mathrm{NH}, \mathrm{Y}_{1}=\mathrm{Y}_{2}=\mathbf{O}, \mathrm{R}_{2}=\mathrm{PO}_{3}{ }^{2-}, \mathrm{R}_{1}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=\mathbf{O H}$
3^{\prime} - OCH_{3}-cADPR, $\quad \mathrm{X}=\mathrm{NH}, \mathrm{Y}_{1}=\mathrm{Y}_{2}=\mathrm{O}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{CH}_{3}, \mathrm{R}_{4}=\mathrm{OH}$
2"- NH_{2}-cADPR, $\quad \mathrm{X}=\mathrm{NH}, \mathrm{Y}_{1}=\mathrm{Y}_{2}=\mathrm{O}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=\mathrm{NH}_{2}$
cADPcR, $\quad X=N H, Y_{1}=\mathbf{C H}_{2}, Y_{2}=O, R_{1}=R_{2}=\mathbf{R}_{3}=H, \mathbf{R}_{4}=\mathbf{O H}$
Cyclic Aristeromycin Diphosphoribose
$\mathrm{X}=\mathrm{NH}, \mathrm{Y}_{1}=\mathrm{O}, \mathrm{Y}_{2}=\mathrm{CH}_{2}, \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}, \mathrm{R}_{4}=\mathrm{OH}$

cIDPRE, $\mathrm{R}=\mathrm{H}$
cIDP-DE
8-Br-cIDPRE, $\mathrm{R}=\mathrm{Br}$
8-N $\mathbf{3}_{3}$-cIDPRE, $\mathrm{R}=\mathrm{N}_{3}$
8- NH_{2}-cIDPRE, $\mathrm{R}=\mathrm{NH}_{2}$
8-Cl-cIDPRE, $\mathrm{R}=\mathrm{Cl}$
Figure 1. Structures of cADPR analogues.
bocyclic ribose (cADPcR). ${ }^{12}$ Interestingly, in higher eukaryotic cell types, cADPcR and its analogues were relatively weak in their Ca^{2+} mobilizing activity, ${ }^{9,13}$ while the southern ribose carbocyclic substitution was almost identical to cADPR. ${ }^{9}$ These results indicated that the polar oxygen in the hemiacetal moiety of the northern ribose might be required for receptor binding of cADPR.

\[

$$
\begin{aligned}
& \text { a. } X=0, n=1 \\
& \text { b. } X=C, n=0 \\
& \text { c } X=C, n=1 \\
& \text { d.X }=C, n=2
\end{aligned}
$$
\]

both the northern and southern ribose were substituted by corresponding ether strands. ${ }^{18}$

In the present study, novel analogues of cADPR with adenine as base and ether or different alkane chain substitutions of the northern ribose were synthesized and characterized; further, the compounds were tested for their biological activity in Jurkat T-lymphocytes.

For sake of clarity, in this paper the structural positions of compounds 10a-d are numbered as follows: a single prime numbering scheme is used for the position of the N^{9}-ribosyl moiety, and a double prime numbering scheme is used for the position of the N^{1}-substitution (Figure 2).

Results and Discussion

Chemistry. The syntheses of compounds $\mathbf{1 0 a}-\mathbf{d}$ are summarized in Scheme 1. We reported previously the synthesis of N^{1}-ether substituted $N 1$-cIDPR, cIDPRE. ${ }^{15}$ An N ${ }^{1}$ substitution was carried out regioselectively on the protected inosine. However, the same strategy cannot be used in the case of adenosine. The N^{1} substitution on the adenine moiety is very difficult, and an N^{6}-substituted adenosine is the main product instead. Blackburn's group provided an efficient method to construct the N^{1} substituted adenosine. ${ }^{19,20}$ By use of the same

Scheme 1. Syntheses of Compounds $\mathbf{1 0 a}-\mathbf{d}^{a}$

$9 a, 9 b, 9 c, 9 d$
10a,10b,10c,10d

[^1]

compound 10a

compound 10b

D

Figure 3. Lack of antagonist effect of compounds $\mathbf{1 0 a} \mathbf{- d}$ in intact Jurkat T cells. Jurkat T cells were loaded with Fura 2/AM and analyzed by ratiometric fluorometry on a Hitachi F-2000 flurometer. The cells were preincubated with each compound (500 mM final concentration) for 20 min. OKT3 was added 200 s after the beginning of each measurement, and each experiment was calibrated by the addition of Triton X-100 to obtain a maximal ratio at 900 s and by subsequent addition of EGTA/Tris-base to obtain the minimal ratio.
starting material, 5-[(methoxymethylene)amino]-1-[5-O-(tert-butyldimethylsilyl)-2,3- O-(isopropylidene)- β-D-ribofuranosyl]-imidazole-4-nitrile 1, the formation of N^{1}-ether or alkane chain substituted adenosines ($\mathbf{3 a}-\mathbf{d}$) was achieved regiospecifically by condensation reaction with different amino alcohols ($\mathbf{2 a}$ d) in the presence of a catalytic amount of $\mathrm{K}_{2} \mathrm{CO}_{3}$ in high yield. The structures $\mathbf{3 a}-\mathbf{d}$ were confirmed by ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and HMBC. Correlations between $\mathrm{H}-2$ of adenine and $\mathrm{C}-1^{\prime \prime}$ of the alkane or ether chain on the N^{1} position of the intermediate ($\mathbf{3 a}-\mathbf{d}$) were observed in the NMR HMBC spectrum. We tried to complete the phosphorylation at the free hydroxyl group of $\mathbf{3 a}-\mathbf{d}$; however, it was very difficult to isolate the phosphorylated products in accordance with the report by Shuto in $2001 .{ }^{12}$ Therefore, the hydroxyl groups of intermediates $\mathbf{3 a}-\mathbf{d}$ were protected with MMTrCl , and then the 5^{\prime}-tert-butyldimethylsilyl (TBDMS) groups in $\mathbf{4 a} \mathbf{- d}$ were removed by TBAF solution.

The resulting hydroxyl groups were phosphorylated with cyclohexylammonium S, S-diphenylphosphorodithioate (PSS) in the presence of triisopropylbenzenesulfonyl choride (TPSCl) and tetrazole in pyridine to give $\mathbf{6 a}-\mathbf{d}$ in 65% yield. The presence of the bis(phenylthio)phosphoryl group in the molecules was supported by ${ }^{31} \mathrm{P}$ NMR (49.39 ppm , s). Removal of the MMTr group of $\mathbf{6 a - d}$ with 80% aqueous AcOH provided $7 \mathbf{a}-\mathbf{d}$, respectively. The resulting terminal hydroxyl groups in $7 \mathbf{a}-\mathbf{d}$ were phosphorylated with the $\mathrm{POCl}_{3} / \mathrm{PO}(\mathrm{OMe})_{3}$ system. ${ }^{21}$ The phosphorylated products were treated with $\mathrm{H}_{3} \mathrm{PO}_{2}$ and $\mathrm{Et}_{3} \mathrm{~N}^{22}$ in pyridine to afford directly 5^{\prime}-phenylthiophosphates $\mathbf{8 a}-\mathbf{d}$, the substrates for the intramolecular cyclization reaction. The presence of two different phosphate groups in $\mathbf{8 a}-\mathbf{d}$ was supported by ${ }^{31}$ P NMR (see Experiment Section). The intramolecular cyclization of compounds $\mathbf{8 a}-\mathbf{d}$ was achieved as described in the synthesis of cIDPRE ${ }^{15}$ to afford the corre-
sponding cyclic pyrophosphate compounds ($\mathbf{9 a} \mathbf{a} \mathbf{d}$) in 60% yield. The cyclic pyrophosphate structures of $\mathbf{9 a - b}$ were confirmed by the data from HR-ESI-MS, ${ }^{1} \mathrm{H}$ NMR, and ${ }^{31} \mathrm{P}$ NMR. Deprotection of the isopropylidene group of $\mathbf{9 a}-\mathbf{d}$ was carried out with aqueous HCOOH at room temperature for 8 h to furnish target compounds $\mathbf{1 0 a}-\mathbf{d}$. After repeated HPLC purification, 10a-d were characterized by HR-ESI-MS, ${ }^{1} \mathrm{H}$ NMR, and ${ }^{31}$ P NMR (see Experiment Section).

Pharmacology. The cADPR/RyR signaling pathway is critically important for T -lymphocyte Ca^{2+} signaling and T cell activation. ${ }^{4,23,24}$ Thus, we aimed to pharmacologically characterize the novel analogues in this cell system. Ca^{2+} signaling can be analyzed in living T cells using fluorescent Ca^{2+} indicators, both in cell suspensions ${ }^{9}$ and on the single cell level. ${ }^{25,26}$ Since cIDPRE has been shown to be membrane-permeant and the novel compounds were expected to be membrane-permeant too, all analyses were carried out with intact cells. To assay the antagonist property of any compound, cells were preincubated and a quasi-physiological stimulation via the T cell receptor/ CD3 complex was carried out. To assay the agonist property of any compound, the compound was added to the cell suspension or single cell and any effect on Ca^{2+} signaling was recorded directly.

The pharmacological activities of compounds 10a-d were analyzed in intact human Jurkat T-lymphocytes. Preincubation of 10a-d did not alter Ca^{2+} mobilization evoked by anti-CD3 monoclonal antibody (mAb) OKT3; rather, a small additional stimulatory effect on $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ was observed (Figure 3). Thus, all four compounds appear to have no antagonist effect on the cADPR/RyR signaling system.

Next, the four compounds were analyzed for their potential activity as agonists of the cADPR/RyR signaling pathway. All four compounds 10a-d were added to intact Jurkat Tlymphocytes. At an extracellular concentration of $500 \mu \mathrm{M}$, they induced a rapid but weak elevation of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ (Figure 4). It appears that all compounds are membrane-permeant analogues of cADPR, similar to cIDPRE and cIDP-DE, ${ }^{15,18}$ since they act on intact cells. All compounds showed a typical biphasic Ca^{2+} mobilizing kinetics with an initial immediate Ca^{2+} peak and a subsequent plateau phase (Figure 4). The induction of the immediate peak was strongest for compound 10a at $500 \mu \mathrm{M}$, while for the compounds $\mathbf{1 0 b}-\mathbf{d}$ a less pronounced initial Ca^{2+} peak was observed. A quantitative comparison with cIDPRE ${ }^{15}$ is depicted in Figure 5; while compounds $\mathbf{1 0 b} \mathbf{- d}$ produced small Ca^{2+} peak elevations between 10 and $500 \mu \mathrm{M}$, there was an increased effect of compound 10a at $500 \mu \mathrm{M}$ (Figure 5A). In comparison to cIDPRE, however, even the effect of compound 10a was approximate 2 -fold smaller (Figure 5A). Similar results were also obtained when analyzing the sustained Ca^{2+} signal (Figure 5B); while cIDPRE showed the highest mean activity, all of the new compounds were weaker. Again, as shown in Figure 5A for the Ca^{2+} peak, the effect of compound $\mathbf{1 0 a}$ was slightly stronger compared to compounds $\mathbf{1 0 b}-\mathbf{d}$.

Since compound 10a was most effective among the novel compounds, its Ca^{2+} mobilizing effect was also analyzed on the single T cell level by confocal Ca^{2+} imaging experiments. Individual single Jurkat T cells challenged by compound 10a $(500 \mu \mathrm{M})$ reacted rapidly with high increases in $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$, although the reactivity of some cells was delayed and smaller in amplitude (Figure 6A). The mean value (red curve in Figure 6A) is similar to the kinetics seen in Figure 4 although the initial peak was not as pronounced compared to the cell suspension measurements (see Figure 4, upper panel). Comparing the mean increase in $\left[\mathrm{Ca}^{2+}\right]_{i}$ evoked by compound 10a to a vehicle control (Figure

Figure 4. Ca^{2+} mobilization by compounds $\mathbf{1 0 a}-\mathbf{d}$ in intact Jurkat T cells. Jurkat T cells were loaded with Fura 2/AM and analyzed by ratiometric fluorometry on a Hitachi F-2000 flurometer. Compounds were added 200 s after the beginning of measurement. Each experiment was calibrated by the addition of Triton $\mathrm{X}-100$ to obtain a maximal ratio at 900 s and by subsequent addition of EGTA/Tris-base to obtain the minimal ratio.

6B, blue curve) or to a positive control (induction by anti-CD3 mAb OKT3; black curve in Figure 6B) suggests that compound 10a can substitute for almost the full sustained part of the quasiphysiological activation via the TCR/CD3 complex. However, in the initial phase, activation of RyR by compound 10a obviously can only induce part of the signal (Figure 6B). Using confocal Ca^{2+} imaging at a faster acquisition rate (approximately one ratio per 150 ms), upon extracellular addition of compound 10a we demonstrate the induction of localized small Ca^{2+} signals in the vicinity of the cell border but also in many regions

Figure 5. Concentration response relationship of Ca^{2+} mobilization by compounds $\mathbf{1 0 a} \mathbf{- d}$ in intact Jurkat T cells. Jurkat T cells were loaded with Fura 2/AM and analyzed by ratiometric fluorometry on a Hitachi F-2000 flurometer. " Ca^{2+} peak" (A) and " Ca^{2+} plateau" (B) relate to the initial Ca^{2+} peak (approximately $150-300 \mathrm{~s}$) and the sustained Ca^{2+} plateau (800 s), respectively. Data are the mean $\pm \mathrm{SE}(n=2-6)$.
deep in the cytosol (Figure 6C, time point 39.38 s). The confocal image taken at 39.38 s in Figure 6C (marked and magnified region) also demonstrates the recruitment of neighboring smaller signals. Finally, a global Ca^{2+} signal occurred (Figure 6C).

Taken together, our study demonstrates that the four novel cADPR analogues $\mathbf{1 0} \mathbf{-}-\mathbf{d}$ are weak agonists of the cADPR/ RyR signaling system. The results also indicate that these four compounds do not display any antagonist activity.

Compared to native cADPR, substitutions on C 8 of the adenine ring confer antagonistic activity to the cADPR analogues. ${ }^{5}$ Other possibilities to construct cADPR antagonists include modifications at the C 3 of the southern ribose. ${ }^{8}$ Although the compounds introduced in the current report do not display any modifications at C 8 of the adenine ring, we suspected that the replacement of the northern ribose by different types of ether bridges might also result in, at least, some antagonist properties. However, this assumption turned out to be wrong. Thus, the data support the idea that C8 modifications of the adenine base are important constituents of cADPR antagonists. Whether this also applies to analogues in which the northern ribose is replaced by ether bridges similar to the ones used in the current study remains to be demonstrated.

The results presented here confirm that the agonist effects of cADPR analogues $\mathbf{1 0 a}-\mathbf{d}$ are retained, although at lower magnitude, even when the northern ribose is replaced by an ether or alkane bridge. Unlike cIDPRE and cIDP-DE, compounds $\mathbf{1 0 a}-\mathbf{d}$ are analogues of cADPR in the sense that the base adenine is preserved. They are the first membrane-permeant cADPR analogues that contain ether or alkane bridges instead of the northern ribose and retain adenine as its base. Except for the difference in the base, the ether strand of 10a contains one CH_{2} more than cIDPRE. ${ }^{15}$ Even though compound 10a has one extra carbon, it appears that the oxygen can still bind, possibly because of the increased flexibility provided by the longer chain. The conformation of 10a may allow a better shift to an ideal binding position to match the receptor binding site. However, when compared to cIDPRE, ${ }^{15}$ the Ca^{2+} peak induced by compound 10a was much less pronounced while a similar effect of 10a on the sustained Ca^{2+} signal was observed. This result may indicate that there are two independent targets for the cADPR mimics. The initial Ca^{2+} peak evoked by the first target may require a northern ribose closer to the natural molecule, like in cIDPRE, ${ }^{15}$ while for the sustained phase the dependency on this part of the molecule is not so strong.

Figure 6. Ca^{2+} mobilization by compound 10 a in single T cells. Jurkat T cells were loaded with Fura-2/AM and analyzed by confocal ratiometric Ca^{2+} imaging as described in "Experimetal Section". Extracellular Ca^{2+} was present at 1 mM throughout the experiments. In panel A the black curves in the diagram represent the behavior of 11 individual Jurkat T cells after the addition of compound 10a (500 $\mu \mathrm{M})$ at the time point of 40 s , while the red curve shows the mean value. Panel B shows the mean value curve (red) compared to effects of anti-CD3 mAb OKT3 (black) and vehicle control (blue). In panel C characteristic confocal ratiometric pseudocolor images of a single Jurkat cell and magnifications of a defined subcellular region are shown. Basal phase (before addition of compound 10a (final concentration of 0.5 $\mathrm{mM})$), pacemaker phase, and global phase are indicated. The image acquisition rate was approximately 1 ratio image per 150 ms .

According to the results in the intact T cell suspension measurements (Figures 4 and 5), the oxygen of the bridge that connects N^{1} of adenosine to the phosphate moiety plays an important role in the binding of the analogue to its target receptor because the biological activities of compounds $\mathbf{1 0 b} \mathbf{- d}$ are weaker than that of compound 10a. The oxygen of the bridge may contribute as a proton acceptor for the formation of a hydrogen bond with a neighboring amino acid residue of the receptor. However, the molecules with the alkane chains still appear to fit into the cADPR receptor binding site, although the oxygen at the right position is required for a better response.

Recently, we have demonstrated that analogues of cADPR containing the base hypoxanthine instead of adenine, e.g., N1cIDPR, ${ }^{16} 8$-Br-cIDPR, ${ }^{27}$ cIDPRE, ${ }^{15}$ cIDP-DE, ${ }^{18}$ are almost not hydrolyzable when incubated with native or recombinant CD38. ${ }^{28}$ This is likely due to the amide-like bond between N1 and $\mathrm{Cl}^{\prime \prime}$ of the northern ribose or its substitute, e.g., ether chain. In contrast, the corresponding $\mathrm{N} 1-\mathrm{C} 1^{\prime \prime}$ bond in cADPR was hydrolyzed by both CD38 and, though to a weaker extent, ADPribosyl cyclase from Aplysia californica. ${ }^{28}$ Although metabolism experiments have not yet been carried out with the novel analogues, a similar behavior as for cADPR can be expected.

Taken together, the first cADPR analogues, in which the northern ribose is replaced by an ether or alkane bridge and the base adenine is retained, were synthesized. The analogues were weak agonists of the cADPR/RyR signaling system in intact human Jurkat T cells but did not show antagonist activity. This series of analogues enlarges our knowledge of the structureactivity relationship of cADPR in the sense that even a replacement of the northern ribose that no longer contains polar components is sufficient for (weak) biological activity.

Experiment Section

Chemistry. Mass spectra were obtained on either VG-ZAB-HS or Bruker APEX. High-resolution FAB (fast atom bombardment) MS and HR-ESI-MS (ESI $=$ electrospray ionization) were performed with Bruker BIFLEX III. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR data were recorded with a JEOL AL300 or a Varian VXR-500 spectrometer using DMSO- d_{6} or $\mathrm{D}_{2} \mathrm{O}$ as solvent. Chemical shifts are reported in parts per million downfield from TMS (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$). ${ }^{31} \mathrm{P}$ NMR spectra were recorded at room temperature by use of Bruker Avance 300 spectrometer (121.42 MHz); orthophosphoric acid (85%) was used as an external standard. Compounds 10a-d were purified twice on an Alltech preparative C_{18} reversed-phase column (2.2 $\mathrm{cm} \times 25 \mathrm{~cm}$) using a Gilson HPLC buffer system: MeCN/TEAB (pH 7.5) and MeCN/TEAA (pH 7.0).
N^{1}-[($5^{\prime \prime}$-Hydroxyl)ethoxyethyl $]$ - 5^{\prime}-O-TBDMS- $2^{\prime}, 3^{\prime}$ - O-isopropylideneadenosine 3a. A mixture of $\mathbf{1}(486 \mathrm{mg}, 1.1 \mathrm{mmol})$, 2a ($144 \mathrm{mg}, 1.3 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(8 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{MeOH}(15$ mL) was stirred at room temperature for 4 h . The mixture was evaporated, and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by silica gel column chromatography ($1: 30 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give compound 3a (477 $\mathrm{mg}, 85 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.00\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right)$, $0.85\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\right), 1.38,1.61$ (each s, each $3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}$), 3.56-3.57 (m, 2H, H-5"), 3.69-3.71 (m, 2H, H-4"), 3.71-3.84 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-5^{\prime \prime}$), 4.18-4.30 (m, 2H, H-1"), 4.35-4.40 (m, $\left.1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.90\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H}^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right)$, $5.12\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H1}^{\prime}, \mathrm{H} 2^{\prime}}=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{2}, \mathrm{H}^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.02(\mathrm{~d}$, $1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), 7.76, 7.82 (each s, each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8$); ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 154.6, 148.1, 141.2, 136.6, 123.7, 114.1, 91.2, 87.0, 85.3, 81.3, 72.7, 68.1, 63.5, 61.6, 47.4, 27.2, 25.9, 25.4, 18.3, -5.6, -5.5. ESI-TOF + -MS: calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Si}$ $\left[(M+1)^{+}\right], 510.3$; found, 510.3. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Si}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{1}-(5' O-isopropylideneadenosine 4a. A mixture of $\mathbf{3 a}(477 \mathrm{mg}, 0.935$
$\mathrm{mmol})$ and $\mathrm{MMTrCl}(577 \mathrm{mg}, 1.87 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ was stirred at room temperature for 8 h . The mixture was evaporated, and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by silica gel column chromatography $\left(1: 60 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give compound $\mathbf{4 a}$ (658 $\mathrm{mg}, 90 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.00\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right)$, $0.86\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\right), 1.29,1.58$ (each s, each $\left.3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right)$, $3.17-3.21\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 3.57-3.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 3.73-3.90$ (m, 7H, H-1", H-2', OCH_{3}), 4.13-4.22(m, 1H, H-5'a), 4.30$4.40\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime}, \mathrm{H}-5^{\prime} \mathrm{b}\right), 4.85\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}}\right.$ $\left.=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.00\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H1}^{\prime}, \mathrm{H} 2^{\prime}}=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-2^{\prime}\right), 6.00\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H1}^{\prime}}=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 6.81-7.44(\mathrm{~m}, 14 \mathrm{H}$, $\mathrm{Ar}-\mathrm{H}$), $7.81,7.82$ (each s, each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 158.5,152.8,148.5,144.5,135.7,130.3,129.2,128.4$, $127.8,127.1,126.8,114.0,113.2,113.0,91.0,87.1,86.2,85.2$, 81.2, 70.8, 68.1, 63.5, 63.0, 55.2, 47.7, 27.2, 25.9, 25.3, 18.3, -5.5, -5.4. ESI-TOF ${ }^{+}-\mathrm{MS}$: calcd for $\mathrm{C}_{43} \mathrm{H}_{55} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{Si}\left[(\mathrm{M}+1)^{+}\right], 782.4$; found, 782.3. Anal. $\left(\mathrm{C}_{43} \mathrm{H}_{55} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{Si}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{1}-(5' $\mathbf{5}^{\prime \prime}$ Monomethoxytrityloxyethoxyethyl)-2', $\mathbf{3}^{\prime}$ - O-isopropylideneadenosine 5a. A mixture of $\mathbf{4 a}(658 \mathrm{mg}, 0.84 \mathrm{mmol})$, TBAF (1 M in THF, $8.4 \mathrm{~mL}, 8.4 \mathrm{mmol}$), and $\mathrm{AcOH}(266 \mu \mathrm{~L}, 4.2 \mathrm{mmol})$ in THF (15 mL) was stirred at room temperature for 2 h . The mixture was evaporated, and the residue was purified by silica gel column chromatography $\left(1: 40 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give compound $\mathbf{5 a}(533 \mathrm{mg}, 95 \%) .{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.28,1.60$ (each s, each $\left.3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 3.19-3.22\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime \prime}\right), 3.59-3.61(\mathrm{~m}, 2 \mathrm{H}$, H-4"), 3.72-3.88 (m, 7H, H-5', H-2'; OCH_{3}), 4.11-4.35(m, 2H, $\left.\mathrm{H}-1^{\prime \prime}\right), 4.43-4.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.93\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 4.99\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 1^{\prime}, \mathrm{H} 2^{\prime}}=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=\right.$ 6.0 Hz, H-2'), $5.75\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H} 2^{\prime}, \mathrm{H1}}=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 6.81-7.42(\mathrm{~m}$, $14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.43(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 7.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.4,153.9,148.5,144.4,144.3,140.5,138.1$, $135.7,130.2,128.3,127.7,126.8,114.1,113.1,93.6,86.2,86.0$, 83.7, 81.3, 70.8, 67.8, 63.0, 63.0, 55.2, 48.2, 27.5, 25.1. ESI-TOF ${ }^{+}$MS: calcd for $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{7}\left[(\mathrm{M}+1)^{+}\right], 668.3$; found, 668.3. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{1}-($5^{\prime \prime}$-Monomethoxytrityloxyethoxyethyl)-5' O-[bis(phenylth-io)phosphoryl]-2', $\mathbf{3}^{\prime}-O$-isopropylideneadenosine 6a. To a solution of $\mathbf{5 a}(533 \mathrm{mg}, 0.798 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ was added TPSCl ($483 \mathrm{mg}, 1.586 \mathrm{mmol}$), PSS ($909 \mathrm{mg}, 2.394 \mathrm{mmol}$), and tetrazole ($168 \mathrm{mg}, 2.394 \mathrm{mmol}$), and the mixture was stirred at room temperature for 12 h . The mixture was evaporated, and the residue was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by silica gel column chromatography (1:40 MeOH/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to give compound $\mathbf{6 a}(483 \mathrm{mg}, 65 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 1.29,1.61$ (each s, each $\left.3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 3.20-3.23(\mathrm{~m}$, 2H, H-5'), 3.59-3.62 (m, 2H, H-4'), 3.74-3.91 (m, 7H, H-5', $\left.\mathrm{H}-2^{\prime \prime}, \mathrm{OCH}_{3}\right), 4.12-4.35$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}^{\prime \prime} 1^{\prime \prime}$), $4.43-4.45$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}$), $4.95\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.00(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H} 2^{\prime}}=2.5 \mathrm{~Hz}, J_{\mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.76\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H} 2^{\prime}, \mathrm{H} 1^{\prime}}\right.$ $\left.=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 6.81-7.46(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.45(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2)$, 7.79 (s,1H, H-8). ${ }^{13} \mathrm{C}$ NMR (125 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 158.4,153.9$, $148.5,144.4,144.3,140.5,138.1,135.7,132.5,130.2,129.4,129.1$, $128.3,127.8,126.8,125.6,114.1,113.1,93.6,86.2,86.0,83.7$, $81.3,70.8,67.8,63.0,62.9,55.2,48.1,27.5,25.1 .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 81 MHz , decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta 49.39 \mathrm{ppm}(\mathrm{s}) . \mathrm{ESI}^{2} \mathrm{TOF}^{+}-\mathrm{MS}$: calcd for $\mathrm{C}_{49} \mathrm{H}_{50} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{PS}_{2}\left[(\mathrm{M}+1)^{+}\right]$, 932.3; found, 932.3. Anal. $\left(\mathrm{C}_{49} \mathrm{H}_{50} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{PS}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{1}-[($\left.\left.5^{\prime \prime}-H y d r o x y l\right) e t h o x y e t h y l\right]-5^{\prime}-O$-[bis(phenylthio)phospho-ryl]-2', $\mathbf{3}^{\prime}$ - O-isopropylideneadenosine 7a. A solution of $\mathbf{6 a}$ (483 $\mathrm{mg}, 0.519 \mathrm{mmol})$ in 80% aqueous $\mathrm{AcOH}(10 \mathrm{~mL})$ was stirred at room temperature for 8 h . The mixture was evaporated, and the residue was partitioned between aqueous saturated NaHCO_{3} and EtOAc. The organic layer was washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was purified by silica gel column chromatography $\left(1: 30 \mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ to give compound $7 \mathbf{a}$ (291 $\mathrm{mg}, 85 \%$). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 1.34,1.56$ (each s , each $\left.3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 3.42-3.75\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-5^{\prime \prime}\right)$, 4.37-4.51 (m, 3H, H-1", OH), 4.59-4.62 (m, 1H, H-4'), 5.05 (dd,
$\left.1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.45\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 1^{\prime}, \mathrm{H} 2^{\prime}}\right.$ $\left.=2.5 \mathrm{~Hz}, J_{\mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.28\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H} 1^{\prime}}=2.5 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-1^{\prime}\right), 7.20-7.50(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.80$ (br s, 1H, NH), 8.25, 8.32 (each s, each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 154.6$, $148.1,141.2,136.6,132.5,129.5,128.9,125.6,123.7,114.1,91.2$, 87.0, 85.3, 81.3, 72.7, 68.1, 63.5, 61.6, 47.4, 27.2, 25.4. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 81 \mathrm{MHz}\right.$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta 49.38 \mathrm{ppm}(\mathrm{s})$. ESI-TOF ${ }^{+}$. MS: calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{PS}_{2}\left[(\mathrm{M}+1)^{+}\right]$, 660.2; found, 660.2. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{PS}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{1}-(5' $5^{\prime \prime}-$ Phosphonoxyethoxyethyl)-5'-O-[(phenylthio)phospho-ryl]-2', $\mathbf{3}^{\prime}$ - \boldsymbol{O}-isopropylideneadenosine $\mathbf{8 a}$. $\mathrm{POCl}_{3}(282 \mu \mathrm{~L}, 3.02$ $\mathrm{mmol})$ was added to a solution of $7 \mathbf{a}(200 \mathrm{mg}, 0.302 \mathrm{mmol})$ in $\mathrm{PO}(\mathrm{OMe})_{3}(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 35 min , then quenched by aqueous saturated $\mathrm{NaHCO}_{3}(6 \mathrm{~mL})$. The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min , then concentrated in vacuo. The residue was dissolved in 1 mL of TEAB $(0.1 \mathrm{M}, \mathrm{pH} 7.5)$. The solution was purified by a C_{18} reversed-phase column ($2.2 \mathrm{~cm} \times 25 \mathrm{~cm}$) using a linear gradient of $0-60 \% \quad \mathrm{CH}_{3} \mathrm{CN}$ in TEAB buffer $(0.1 \mathrm{M}, \mathrm{pH} 7.5)$. The appropriate fractions were collected and evaporated. The residue was coevaporated with pyridine $(5 \mathrm{~mL} \times 3)$. The residue was mixed with $\mathrm{H}_{3} \mathrm{PO}_{2}(120 \mu \mathrm{~L}, 2.4 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(156 \mu \mathrm{~L}, 1.1 \mathrm{mmol})$ in pyridine (3 mL). The mixture was stirred at room temperature in the dark for 12 h , then evaporated in vacuo. The residue was partitioned between $\mathrm{H}_{2} \mathrm{O}$ and CHCl_{3}, and the aqueous layer was washed with $\mathrm{CHCl}_{3}(5 \mathrm{~mL} \times 3)$ and evaporated in vacuo. The residue was dissolved in 1 mL of TEAB buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.5$), then applied to a C_{18} reversed-phase column $(2.2 \mathrm{~cm} \times 25 \mathrm{~cm})$ developed by a linear gradient of $0-60 \% \mathrm{CH}_{3} \mathrm{CN}$ in TEAB buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.5$) within 30 min to give $\mathbf{8 a}(110 \mathrm{mg}, 56 \%$ for two steps) as a triethylammonium salt. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta$ 1.36, 1.58 (each s, each $\left.3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 3.50-3.79\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-5^{\prime}\right.$, H-2', H-4", H-5'), 4.40-4.46 (m, 2H, H-1'), 4.59-4.60 (m, 1H, $\left.\mathrm{H}-4^{\prime}\right), 5.12\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.43$ $\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H1}^{\prime}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.18(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 7.30-7.60(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.28,8.35$ (each s, each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 81 \mathrm{MHz}\right.$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta 2.06 \mathrm{ppm}(\mathrm{s}), 17.79 \mathrm{ppm}(\mathrm{s})$. HRMS (ESI-TOF ${ }^{-}$) calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{P}_{2} \mathrm{~S}\left[(\mathrm{M}-1)^{-}\right], 646.1138$; found, 646.1129.
N^{1}-[($5^{\prime \prime}$-O-Phosphoryl)ethoxyethyl]-2', 3^{\prime} - O-isopropylidene- 5^{\prime} -O-phosphoryladenosine $5^{\prime}, 5^{\prime \prime}$-Cyclicpyrophosphate 9a. A solution of $\mathbf{8 a}(15 \mathrm{mg}, 23 \mu \mathrm{~mol})$ in pyridine $(5 \mathrm{~mL})$ was added slowly over 20 h , using a syringe pump, to a mixture of AgNO_{3} (83 mg , $490 \mu \mathrm{~mol})$ and $3 \AA$ molecular sieves $(2.0 \mathrm{~g})$ in pyridine $(50 \mathrm{~mL})$ at room temperature in the dark. The $3 \AA$ molecular sieves were filtered off with Celite and washed with $\mathrm{H}_{2} \mathrm{O}$. The combined filtrate was evaporated, and the residue was partitioned between CHCl_{3} and $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was evaporated, and the residue was dissolved in 0.1 M TEAB buffer (1.0 mL), which was applied to a C_{18} reversed-phase column $(2.2 \mathrm{~cm} \times 25 \mathrm{~cm})$. The column was developed using a linear gradient of $0-60 \% \mathrm{CH}_{3} \mathrm{CN}$ in TEAB buffer ($0.1 \mathrm{M}, \mathrm{pH} 7.5$) within 30 min to give $9 \mathbf{a}(7.4 \mathrm{mg}, 60 \%)$ as a triethylammonium salt. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 1.38,1.61$ (each s, each $\left.3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 3.30-3.80\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-4^{\prime \prime}\right.$, H-5'), 4.45-4.48 (m, 2H, H-1"), 4.58-4.59 (m, 1H, H-4'), 5.10 $\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.45(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{\mathrm{H} 1^{\prime}, \mathrm{H} 2^{\prime}}=2.5 \mathrm{~Hz}, J_{\mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.15\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H} 2^{\prime}, \mathrm{H} 1^{\prime}}=\right.$ $2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), 8.30, 8.38 (each s, each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8$). ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 81 \mathrm{MHz}\right.$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta-9.69 \mathrm{ppm}\left(\mathrm{d}, J_{\mathrm{P}, \mathrm{P}}=10.0\right.$ $\mathrm{Hz}),-10.61 \mathrm{ppm}\left(\mathrm{d}, J_{\mathrm{P}, \mathrm{P}}=10.0 \mathrm{~Hz}\right)$. HRMS $\left(E S I-\mathrm{TOF}^{-}\right)$calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{P}_{2}\left[(\mathrm{M}-1)^{-}\right]$, 536.0948; found, 536.0940.
N^{1}-[(5' $5^{\prime \prime}-O$-Phosphoryl)ethoxyethyl $]$ - $5^{\prime}-O$-phosphoryladenosine $\mathbf{5}^{\prime}, \mathbf{5}^{\prime \prime}$-Cyclicpyrophosphate $\mathbf{1 0 a}$. A solution of $9 \mathbf{9}(7.4 \mathrm{mg}$, $13.8 \mu \mathrm{~mol}$) in $60 \% \mathrm{HCOOH}(5 \mathrm{~mL})$ was stirred for 8 h and then evaporated under reduced pressure. The purification of the residue was performed with the same procedure as for compound 9 a by HPLC on a C_{18} reversed-phase column, eluting with a linear gradient of $0-60 \% \mathrm{CH}_{3} \mathrm{CN}$ in TEAB buffer $(0.1 \mathrm{M}, \mathrm{pH} 7.5)$ to give the target molecule 10a ($6.2 \mathrm{mg}, 90 \%$). ${ }^{1} \mathrm{H}$ NMR $(500 \mathrm{MHz}$, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 3.20-3.71\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-5^{\prime \prime}\right), 4.45-4.48$ (m, $\left.2 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.50-4.60\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 5.05\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}=3.0\right.$
$\left.\mathrm{Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.40\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{2}, \mathrm{H} 3^{\prime}}\right.$ $\left.=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.35\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 8.25,8.58$ (each s, each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8) .{ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 81 \mathrm{MHz}$, decoupled with ${ }^{1} \mathrm{H}$) $\delta-9.69 \mathrm{ppm}\left(\mathrm{d}, J_{\mathrm{P}, \mathrm{P}}=13.4 \mathrm{~Hz}\right),-10.38 \mathrm{ppm}\left(\mathrm{d}, J_{\mathrm{P}, \mathrm{P}}\right.$ $=13.4 \mathrm{~Hz}$). HRMS (ESI-TOF ${ }^{-}$) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{11} \mathrm{P}_{2}[(\mathrm{M}-$ 1^{-}], 496.0635; found, 496.0629.
 adenosine 3b. A mixture of $\mathbf{1}(486 \mathrm{mg}, 1.1 \mathrm{mmol})$, $\mathbf{2 b}(120 \mathrm{mg}$, $1.3 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(8 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$ was stirred at room temperature for 4 h . The procedure was the same as for the synthesis of $\mathbf{3 a}$ to give $\mathbf{3 b}$ in 82% yield. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.00\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right), 0.86\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\right)$, 1.39, 1.62 (each s, each $3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}$), $1.64-1.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right)$, $1.85-1.98$ (m, 2H, H-2"), 3.77-3.89 (m, 4H, H-4" , H-5'), 4.05$4.20\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-\mathrm{l}^{\prime \prime}\right), 4.38-4.42\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.90\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}^{3}, \mathrm{H} 4^{\prime}}\right.$ $\left.=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.10\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{HI}^{\prime}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{H}^{2}, \mathrm{H}^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.02\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H1}^{\prime}}=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 7.72$, 7.85 (each s, each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 154.6, 147.1, 141.5, 136.9, 123.7, 114.1, 91.2, 87.0, 85.2, 81.3, 63.5, 61.7, 47.1, 28.1, 27.2, 25.8, 25.7, 25.4, 18.3, -5.5, -5.6. ESI-TOF ${ }^{+}$-MS: calcd for $\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}\left[(\mathrm{M}+1)^{+}\right]$, 494.3; found, 494.3. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{1}-(4' $4^{\prime \prime}$-Monomethoxytrityloxybutyl)-5'-O-TBDMS- $\mathbf{2}^{\prime}, \mathbf{3}^{\prime}$ - O-isopropylideneadenosine $\mathbf{4 b}$. A mixture of $\mathbf{3 b}(445 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{MMTrCl}(557 \mathrm{mg}, 1.8 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ was stirred at room temperature for 8 h . The procedure was the same as for the synthesis of $\mathbf{4 a}$ to give $\mathbf{4 b}$ in 90% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.00\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right), 0.82\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\right), 1.36$, 1.59 (each s, each $\left.3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 1.62-1.67$ (m, 2H, H-3"), 1.85$1.88\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right), 3.05-3.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-4^{\prime \prime}\right), 3.73-3.90(\mathrm{~m}, 5 \mathrm{H}$, $\left.\mathrm{H}-5^{\prime}, \mathrm{OCH}_{3}\right), 3.92-4.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.35-4.37\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right)$, $4.86\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.07(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{\mathrm{HI}^{\prime}, \mathrm{H} 2^{\prime}}=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.00\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}\right.$ $\left.=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 6.78-7.41(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.60,7.78$ (each s , each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.2,153.5$, $147.4,147.3,144.5,139.9,138.3,138.3,135.9,130.2,128.9,127.8$, $126.8,125.1,114.2,113.1,93.9,86.0,85.6,83.6,81.4,63.2,62.7$, $55.5,48.7,27.6,27.0,25.7,25.4,25.3,18.3,-5.5,-5.6$. ESITOF ${ }^{+}$-MS: calcd for $\mathrm{C}_{43} \mathrm{H}_{55} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Si}\left[(\mathrm{M}+1)^{+}\right]$, 766.4 ; found, 766.3. Anal. $\left(\mathrm{C}_{43} \mathrm{H}_{55} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Si}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{1}-(4' $\mathbf{\prime}^{\prime \prime}$-Monomethoxytrityloxybutyl) $\mathbf{2}^{\prime}, 3^{\prime}$ - O-isopropylideneadenosine 5b. A mixture of $\mathbf{4 b}(620 \mathrm{mg}, 0.81 \mathrm{mmol})$, TBAF (1 M in THF, $8.1 \mathrm{~mL}, 8.1 \mathrm{mmol}$), and $\mathrm{AcOH}(260 \mu \mathrm{~L}, 4.1 \mathrm{mmol})$ in THF (20 mL) was stirred at room temperature for 2 h . The procedure was the same as for the synthesis of $\mathbf{5 a}$ to give $\mathbf{5 b}$ in 90% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.37,1.63$ (each s, each $3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}$), 1.70-1.80 (m, 2H, H-3"), 1.85-1.91 (m, 2H, H-2"), 3.09-3.13 (m, 2H, H-4"), 3.74-3.96 (m, 5H, H-5', OCH_{3}), $3.98-4.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.49-4.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.92(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.10\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H1}^{\prime}, \mathrm{H}^{\prime}}=\right.$ $\left.2.5 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.95\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-1^{\prime}\right), 6.81-7.44(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.58(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 7.63(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{H}-8) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.4,153.7,147.4,147.3$, $144.6,140.3,138.3,138.2,135.9,130.2,128.3,127.8,126.8,125.0$, 114.1, 113.0, $93.8,86.1,85.8,83.6,81.4,63.1,62.6,55.2,48.2$, 27.5, 27.0, 25.5, 25.2. ESI-TOF ${ }^{+}$-MS: calcd for $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{6}[(\mathrm{M}$ $+1)^{+}$, 652.3; found, 652.2. Anal. $\left(\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{1}-(4" $4^{\prime \prime}$ Monomethoxytrityloxybutyl)- $5^{\prime}-O$-[bis(phenylthio)-phosphoryl]-2', $\mathbf{3}^{\prime}-O$-isopropylideneadenosine $\mathbf{6 b}$. To a solution of $\mathbf{5 b}(475 \mathrm{mg}, 0.73 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ were added TPSCl ($444 \mathrm{mg}, 1.458 \mathrm{mmol}$), PSS ($831 \mathrm{mg}, 2.19 \mathrm{mmol}$), and tetrazole ($154 \mathrm{mg}, 2.19 \mathrm{mmol}$), and the mixture was stirred at room temperature for 12 h . The procedure was the same as for the synthesis of $\mathbf{6 a}$ to give $\mathbf{6 b}$ in 65% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.39,1.65$ (each s, each $\left.3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 1.73-1.79(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 1.87-1.92$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$), $3.08-3.11$ (m, 2H, H-4"), $3.72-3.98\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{OCH}_{3}\right), 4.00-4.03\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.48-$ $4.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.97\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H}^{4}}=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{2}, \mathrm{H}^{\prime}}=6.0\right.$ $\left.\mathrm{Hz}, \mathrm{H}-3^{\prime}\right), 5.30\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H} 2^{\prime}}=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$, $5.94\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{HI}^{\prime}}=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 6.81-7.46(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $7.60(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 7.66(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 158.4,153.7,147.4,147.3,144.6,140.3,138.3,138.2,135.9$, 132.7, 130.2, 129.4, 129.1, 128.3, 127.7, 126.8, 125.6, 125.0, 114.1, 113.0, 93.8, 86.1, 85.8, 83.6, 81.4, 63.1, 62.6, 55.2, 48.2, 27.5, 27.0, 25.5, 25.2. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 81 \mathrm{MHz}\right.$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta 49.41$ ppm (s). ESI-TOF ${ }^{+}$-MS: calcd for $\mathrm{C}_{49} \mathrm{H}_{50} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{PS}_{2}\left[(\mathrm{M}+1)^{+}\right]$, 916.3; found, 916.3. Anal. $\left(\mathrm{C}_{49} \mathrm{H}_{50} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{PS}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{1}-[(4"-Hydroxyl)butyl]-5'-O-[bis(phenylthio)phosphoryl]$\mathbf{2}^{\prime}, \mathbf{3}^{\prime}$ - \boldsymbol{O}-isopropylideneadenosine $\mathbf{7 b}$. A solution of $\mathbf{6 b}(435 \mathrm{mg}$, 0.475 mmol) in 80% aqueous $\mathrm{AcOH}(10 \mathrm{~mL})$ was stirred at room temperature for 8 h . The procedure was the same as for the synthesis of 7a to give 7b in 83% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 1.35, 1.63 (each s, each $3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}$), $1.76-1.79$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}$), $1.89-1.93$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-2^{\prime \prime}$), 3.05-3.08 (m, 2H, H-4"), 3.82-3.98 (m, 2H, H-5'), 4.04-4.08 (m, 2H, H-1"), 4.49-4.50 (m, 1H, H-4'), $4.89\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.26(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H} 2^{\prime}}=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{2}, \mathrm{H}^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.98\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{2}, \mathrm{H} 1^{\prime}}\right.$ $\left.=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 6.83-7.43(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.63(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2)$, 7.70 (s, 1H, H-8). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 154.6, 147.1, 141.5, 136.9, 132.4, 129.4, 129.1, 125.6, 123.7, 114.1, 91.2, 87.0, 85.2, 81.3, 63.5, 61.7, 47.1, 28.1, 27.2, 25.7, 25.4. ${ }^{31} \mathrm{P}$ NMR (CDCl_{3}, 81 MHz , decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta 49.37 \mathrm{ppm}(\mathrm{s})$. ESI-TOF ${ }^{+}$-MS: calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{PS}_{2}\left[(\mathrm{M}+1)^{+}\right]$, 644.2; found, 644.2. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{PS}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
\boldsymbol{N}^{1}-(4"'Phosphonoxybutyl)-5'-O-[(phenylthio)phosphoryl]$\mathbf{2}^{\mathbf{\prime}}, \mathbf{\mathbf { 3 } ^ { \prime } - \boldsymbol { O }} \boldsymbol{O}$-isopropylideneadenosine $\mathbf{8 b} . \mathrm{POCl}_{3}(290 \mu \mathrm{~L}, 3.11 \mathrm{mmol})$ was added to a solution of $\mathbf{7 b}(200 \mathrm{mg}, 0.311 \mathrm{mmol})$ in $\mathrm{PO}(\mathrm{OMe})_{3}$ $(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 35 min . The following procedure was the same as for the synthesis of $\mathbf{8 a}$ to give $\mathbf{8 b}$ in 52% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 1.35,1.63$ (each s, each $3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}$), $1.77-1.79$ (m, 2H, H-3"), 1.88-1.92 (m, 2H, H-2"), 3.07-3.09 (m, 2H, H-4"), 3.86-3.99 (m, 2H, H-5'), 4.06-4.10 (m, 2H, H-1"), 4.51-4.52 (m, 1H, H-4'), $4.99\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.45(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{\mathrm{Hi}^{\prime}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.02\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H1}}{ }^{\prime}\right.$ $\left.=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 6.88-7.42(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2)$, 8.38 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$). ${ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 81 \mathrm{MHz}$, decoupled with ${ }^{1} \mathrm{H}$) δ $2.84 \mathrm{ppm}(\mathrm{s}), 17.69 \mathrm{ppm}(\mathrm{s})$. HRMS (ESI-TOF ${ }^{-}$) calcd for $\mathrm{C}_{23} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{~S}\left[(\mathrm{M}-1)^{-}\right]$, 630.1189; found, 630.1182.
N^{1}-[(4 $4^{\prime \prime}-O$-Phosphoryl)butyl $]-2^{\prime}, 3^{\prime}-O$-isopropylidene-5'-O-phosphoryladenosine $5^{\prime}, 5^{\prime \prime}$-Cyclicpyrophosphate $\mathbf{9 b}$. A solution of $\mathbf{8 b}$ ($15 \mathrm{mg}, 23.8 \mu \mathrm{~mol}$) in pyridine (5 mL) was added slowly over 20 h , using a syringe pump, to a mixture of $\mathrm{AgNO}_{3}(86 \mathrm{mg}, 507 \mu \mathrm{~mol})$ and $3 \AA$ molecular sieves (2.07 g) in pyridine (50 mL) at room temperature in the dark. The procedure was the same as for the synthesis of $\mathbf{9 a}$ to give $\mathbf{9 b}$ in 60% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right)$ $\delta 1.39,1.65$ (each s, each $\left.3 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right), 1.79-1.80\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right)$, $1.86-1.89$ (m, 2H, H-2"), 3.07-3.09 (m, 2H, H-4"), 3.89-3.98 (m, 2H, H-5'), 4.08-4.11 (m, 2H, H-1"), 4.49-4.50 (m, 1H, H-4'), $5.02\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.65(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{\mathrm{H1}^{\prime}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{2}, \mathrm{H}^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.10\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{2}, \mathrm{H}^{\prime}}\right.$ $\left.=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 8.27(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-2), 8.39(\mathrm{~s}, 1 \mathrm{H}, \mathrm{H}-8) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 81 \mathrm{MHz}\right.$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta-9.65 \mathrm{ppm}\left(\mathrm{d}, J_{\mathrm{P}, \mathrm{P}}=10.0\right.$ Hz), $-10.35 \mathrm{ppm}\left(\mathrm{d}, J_{\mathrm{P}, \mathrm{P}}=10.0 \mathrm{~Hz}\right.$). HRMS (ESI-TOF ${ }^{-}$) calcd for $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{P}_{2}\left[(\mathrm{M}-1)^{-}\right], 520.0999$; found, 520.1004.
N^{1}-[(4"'O-Phosphoryl)butyl]-5'-O-phosphoryladenosine $5^{\prime}, 5^{\prime \prime}$ Cyclicpyrophosphate 10b. A solution of $9 \mathrm{~b}(7.4 \mathrm{mg}, 14.3 \mu \mathrm{~mol})$ in $60 \% \mathrm{HCOOH}(5 \mathrm{~mL})$ was stirred for 8 h . The procedure was the same as for the synthesis of 10a to give 10b in 90% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 1.77-1.79\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 1.87-1.89$ (m, 2H, H-2"), 3.05-3.07 (m, 2H, H-4"), 3.90-3.96 (m, 2H, H-5'), 4.12-4.17 (m, 2H, H-1"), 4.52-4.53 (m, 1H, H-4'), 4.95 (dd, 1H, $\left.J_{\mathrm{H}^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.40\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H1}^{\prime}, \mathrm{H}^{\prime}}=\right.$ $\left.2.5 \mathrm{~Hz}, J_{\mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.08\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H1}^{\prime}}=2.5 \mathrm{~Hz}\right.$, $\mathrm{H}-1^{\prime}$), 8.30 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-2$), 8.38 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{H}-8$). ${ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 81$ MHz , decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta-9.70 \mathrm{ppm}\left(\mathrm{d}, J_{\mathrm{P}, \mathrm{P}}=10.0 \mathrm{~Hz}\right),-10.35$ ppm (d, $J_{\mathrm{P}, \mathrm{P}}=10.0 \mathrm{~Hz}$). HRMS (ESI-TOF ${ }^{-}$) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{P}_{2}$ [(M - 1) ${ }^{-}$], 480.0686; found, 480.0678 .
N^{1}-[(5 $5^{\prime \prime}$-Hydroxyl)pentyl]-5'- O-TBDMS- $2^{\prime}, 3^{\prime}$ - O-isopropylideneadenosine 3c. A mixture of $\mathbf{1}(486 \mathrm{mg}, 1.1 \mathrm{mmol}), \mathbf{2 c}(135 \mathrm{mg}$, $1.3 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(8 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$ was stirred at room temperature for 4 h . The procedure was the same
as for the synthesis of $\mathbf{3 a}$ to give $\mathbf{3 c}$ in 84% yield. ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.00\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right), 0.86\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\right)$, 1.39 ($\mathrm{s}, 3 \mathrm{H}$, isopropyl CH_{3}), $1.46-1.52\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-3^{\prime \prime}\right), 1.62$ (s, 3 H , isopropyl CH_{3}), 1.63-1.67 (m, 2H, H-4"), 1.83-1.89 (m, 2H, H-2'), 3.65-3.67 (m, 2H, H-5"), 3.76-3.86 (m, 2H, H-5'), 4.00$4.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.38-4.40\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.89\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}\right.$ $\left.=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.11\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{HI}^{\prime}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.03\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H1}^{\prime}}=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 7.68$, 7.82 (each s, each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 152.7, 145.5, 139.4, 134.4, 122.1, 112.3, 89.4, 85.3, 83.5, 79.5, $61.7,60.3,46.1,30.3,27.9,26.5,25.4,24.1,23.6,21.1,16.5,-7.2$, -7.3 . ESI-TOF ${ }^{+}$-MS: calcd for $\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}\left[(\mathrm{M}+1)^{+}\right], 508.3$; found, 508.3. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{41} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{1}-($5^{\prime \prime}$-Monomethoxytrityloxypentyl)-5'-O-TBDMS-2', $3^{\prime}-O$ isopropylideneadenosine 4c. A mixture of $\mathbf{3 c}(469 \mathrm{mg}, 0.924$ $\mathrm{mmol})$ and $\mathrm{MMTrCl}(572 \mathrm{mg}, 1.848 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ was stirred at room temperature for 8 h . The procedure was the same as for the synthesis of $\mathbf{4 a}$ to give $\mathbf{4 c}$ in 91% yield. ${ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.00\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right), 0.86\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\right.$), 1.39 ($\mathrm{s}, 3 \mathrm{H}$, isopropyl CH_{3}), 1.45-1.78 (m, 9H, H-2", H-3", $\mathrm{H}-4^{\prime \prime}$, isopropyl CH_{3}), 3.06 (m, 2H, H-5"), 3.78-3.83 (m, 5H, H-5', OCH_{3}), 3.99-4.04 (m, 2H, H-1"), 4.39-4.40 (m, 1H, H-4'), 4.89 $\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}^{3}, \mathrm{H} 4^{4}}=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{2}, \mathrm{H}^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.09(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{\mathrm{H1}^{\prime}, \mathrm{H} 2^{\prime}}=2.5 \mathrm{~Hz}, J_{\mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.03\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{2}, \mathrm{H1}^{\prime}}=\right.$ $2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}$), $6.81-7.44(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.64,7.82$ (each s , each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8$). ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.3,153.7,147.4$, $144.6,141.3,139.5,136.3,130.0,128.1,127.7,124.3,114.1,112.8$, $93.2,86.4,84.2,81.9,63.1,55.5,49.1,29.4,28.3,27.5,26.3,25.2$, 23.5, 17.2, -7.1, -7.2. ESI-TOF ${ }^{+}$-MS: calcd for $\mathrm{C}_{44} \mathrm{H}_{57} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Si}$ $\left[(\mathrm{M}+1)^{+}\right], 780.4$; found, 780.3. Anal. $\left(\mathrm{C}_{44} \mathrm{H}_{57} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Si}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{1}-($5^{\prime \prime}$-Monomethoxytrityloxypentyl)-2', 3^{\prime} - O-isopropylideneadenosine 5 c . A mixture of $\mathbf{4 c}(656 \mathrm{mg}, 0.84 \mathrm{mmol})$, TBAF (1 M in THF, $8.4 \mathrm{~mL}, 8.4 \mathrm{mmol}$), and $\mathrm{AcOH}(273 \mu \mathrm{~L}, 4.3 \mathrm{mmol})$ in THF (20 mL) was stirred at room temperature for 2 h . The procedure was the same as for the synthesis of $\mathbf{5 a}$ to give $\mathbf{5 c}$ in 90% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.37$ (s, 3 H , isopropyl CH_{3}), $1.45-1.78$ (m, 9H, H-2", $\mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}$, isopropyl CH_{3}), 3.06 (m, 2H, H-5"), 3.73-3.91 (m, 5H, H-5', OCH3), 3.95-4.03(m, $\left.2 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.49-4.50\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.95\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H} 4^{\prime}}=3.0\right.$ $\left.\mathrm{Hz}, J_{\mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.05\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{HI}^{\prime}, \mathrm{H} 2^{\prime}}=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{2}, \mathrm{H} 3^{\prime}}\right.$ $\left.=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.78\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{HI}^{\prime}}=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 6.81-7.44$ (m, 14H, Ar-H), 7.64, 7.66 (each s, each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8$). ${ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.3,153.3,147.2,144.7,141.0,139.0,136.0$, 130.2, 128.3, 127.7, 124.1, 114.1, 112.9, 93.4, 86.0, 83.9, 81.4, 62.9, 55.1, 48.7, 29.6, 28.4, 27.5, 25.2, 23.3. ESI-TOF ${ }^{+}$-MS: calcd for $\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{6}\left[(\mathrm{M}+1)^{+}\right]$, 666.3; found, 666.2. Anal. $\left(\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{6}\right)$ C, H, N.
N^{1}-(5"-Monomethoxytrityloxypentyl)-5'-O-[bis(phenylthio)-phosphoryl]-2', $\mathbf{3}^{\prime}-O$-isopropylideneadenosine 6 c . To a solution of $5 \mathbf{c}(503 \mathrm{mg}, 0.756 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ were added TPSCl ($460 \mathrm{mg}, 1.51 \mathrm{mmol}$), PSS ($861 \mathrm{mg}, 2.27 \mathrm{mmol}$), and tetrazole $(159 \mathrm{mg}, 2.27 \mathrm{mmol})$. The mixture was stirred at room temperature for 12 h . The procedure was the same as for the synthesis of $\mathbf{6 a}$ to give $\mathbf{6 c}$ in 65% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.39(\mathrm{~s}, 3 \mathrm{H}$, isopropyl CH_{3}), 1.41-1.72 (m, 9H, H2", H-3", $\mathrm{H}-4^{\prime \prime}$, isopropyl CH_{3}), 3.11 (m, 2H, H-5"), 3.75-3.95 (m, 5H, H-5', OCH3), 4.00$4.10\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.51-4.52\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.89\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}\right.$ $\left.=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.10\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H} 2^{\prime}}=2.5 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{H}^{2}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.78\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{2}, \mathrm{H} 1^{\prime}}=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 6.80-$ $7.56(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.56,7.68$ (each s, each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.3,153.5,147.2,144.8,140.9,138.9$, 136.1, 132.5, 130.2, 129.4, 129.1, 128.3, 127.7, 126.3, 124.1, 114.0, $112.9,93.5,86.1,84.0,81.6,63.1,55.1,48.6,29.5,28.5,27.6,25.3$, 23.4. ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 81 \mathrm{MHz}\right.$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta 49.45 \mathrm{ppm}$ (s). ESI-TOF ${ }^{+}$-MS: calcd for $\mathrm{C}_{50} \mathrm{H}_{52} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{PS}_{2}\left[(\mathrm{M}+1)^{+}\right]$, 930.3; found, 930.3. Anal. $\left(\mathrm{C}_{50} \mathrm{H}_{52} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{PS}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{1}-[(5 $5^{\prime \prime}$-Hydroxyl)pentyl]-5'-O-[bis(phenylthio)phosphoryl]$\mathbf{2}^{\prime}, \mathbf{3}^{\prime}-\boldsymbol{O}$-isopropylideneadenosine 7 c . A solution of $\mathbf{6 c}(457 \mathrm{mg}$, 0.491 mmol) in 80% aqueous $\mathrm{AcOH}(10 \mathrm{~mL})$ was stirred at room temperature for 8 h . The procedure was the same as for the synthesis of 7a to give $\mathbf{7 c}$ in 82% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.36$
(s, 3H, isopropyl CH_{3}), $1.48-1.70\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}\right.$, isopropyl CH_{3}), 3.05 (m, $2 \mathrm{H}, \mathrm{H}-5^{\prime \prime}$), $3.85-3.97$ (m, $2 \mathrm{H}, \mathrm{H}-5^{\prime}$), $4.05-4.09\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\prime \prime}\right), 4.52-4.53\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.90(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{\mathrm{H}^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{2}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.05\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=\right.$ $\left.2.5 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.95\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H1}^{\prime}}=2.5 \mathrm{~Hz}\right.$, $\mathrm{H}-1^{\prime}$), 6.85-7.42 (m, 10H, Ar-H), 7.65, 7.70 (each s, each 1 H , $\mathrm{H}-2, \mathrm{H}-8) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 152.7,145.5,139.4$, $134.4,132.7,129.5,129.2,125.7,122.1,112.3,89.4,85.3,83.5$, $79.5,61.7,60.3,46.1,30.3,27.9,26.5,25.4,24.1,23.6 .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}, 81 \mathrm{MHz}\right.$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta 49.50 \mathrm{ppm}(\mathrm{s})$. ESI-TOF ${ }^{+}$MS: calcd for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{PS}_{2}\left[(\mathrm{M}+1)^{+}\right]$, 658.2; found, 658.2. Anal. $\left(\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{PS}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{1}-(5"'Phosphonoxypentyl)-5'-O-[(phenylthio)phosphoryl]$\mathbf{2}^{\prime}, \mathbf{3}^{\prime}$-O-isopropylideneadenosine 8c. $\mathrm{POCl}_{3}(283 \mu \mathrm{~L}, 3.04 \mathrm{mmol})$ was added to a solution of $7 \mathbf{c}(200 \mathrm{mg}, 0.304 \mathrm{mmol})$ in $\mathrm{PO}(\mathrm{OMe})_{3}$ $(3 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 35 min . The following procedure was the same as for the synthesis of $\mathbf{8 a}$ to give $\mathbf{8 c}$ in 51% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 1.41\left(\mathrm{~s}, 3 \mathrm{H}\right.$, isopropyl $\left.\mathrm{CH}_{3}\right), 1.52-1.75\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}\right.$, H-4", isopropyl CH_{3}), 3.20 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-5^{\prime \prime}$), 3.85-4.00 (m, 2H, H-5'), 4.10-4.21 (m, 2H, H-1"), 4.52-4.53 (m, 1H, H-4'), $5.02(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.38\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H1}^{\prime}, \mathrm{H} 2^{\prime}}\right.$ $\left.=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{2}, \mathrm{H}^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.05\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{2}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-1^{\prime}\right), 6.90-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.15,8.32$ (each s, each $1 \mathrm{H}, \mathrm{H}-2$, $\mathrm{H}-8) .{ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 81 \mathrm{MHz}$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta 3.01 \mathrm{ppm}$ (s), $17.65 \mathrm{ppm}(\mathrm{s})$. HRMS (ESI-TOF- $)$ calcd for $\mathrm{C}_{24} \mathrm{H}_{33} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{~S}$ [(M-1)-], 644.1345; found, 644.1338.
N^{1}-[(5 $5^{\prime \prime}$-O-Phosphoryl)pentyl]-2', 3^{\prime} - O-isopropylidene- 5^{\prime} - O phosphoryladenosine $5^{\prime}, 5^{\prime \prime}$-Cyclicpyrophosphate 9 c . A solution of $\mathbf{8 c}(15 \mathrm{mg}, 23.2 \mu \mathrm{~mol})$ in pyridine (5 mL) was added slowly over 20 h , using a syringe pump, to a mixture of $\mathrm{AgNO}_{3}(84 \mathrm{mg}$, $494 \mu \mathrm{~mol}$) and $3 \AA$ molecular sieves (2.02 g) in pyridine (50 mL) at room temperature in the dark. The procedure was the same as for the synthesis of $\mathbf{9 a}$ to give $\mathbf{9 c}$ in 59% yield. ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 1.38\left(\mathrm{~s}, 3 \mathrm{H}\right.$, isopropyl $\left.\mathrm{CH}_{3}\right), 1.49-1.72\left(\mathrm{~m}, 9 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right.$, $\mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}$, isopropyl CH_{3}), 3.25 (m, 2H, H-5"), 3.95-4.15 (m, $\left.2 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.20-4.32$ (m, 2H, H-1"), 4.55 (m, 1H, H-4'), 5.05 (dd, $\left.1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.55\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{HH}^{\prime}, \mathrm{H} 2^{\prime}}\right.$ $\left.=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{2}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.10\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}\right.$, $\mathrm{H}-1^{\prime}$), 8.25, 8.35 (each s, each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8$). ${ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 81$ MHz , decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta-9.99 \mathrm{ppm}\left(\mathrm{d}, J_{\mathrm{P}, \mathrm{P}}=10.0 \mathrm{~Hz}\right),-10.72$ $\mathrm{ppm}\left(\mathrm{d}, J_{\mathrm{P}, \mathrm{P}}=10.0 \mathrm{~Hz}\right.$). HRMS (ESI-TOF-$)$ calcd for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{P}_{2}$ [$\left.(\mathrm{M}-1)^{-}\right], 534.1155$; found, 534.1139.
N^{1}-[(5"'-O-Phosphoryl)pentyl]-5'-O-phosphoryladenosine $5^{\prime}, 5^{\prime \prime}$ Cyclicpyrophosphate 10c. A solution of 9c ($7.3 \mathrm{mg}, 13.7 \mu \mathrm{~mol}$) in $60 \% \mathrm{HCOOH}(5 \mathrm{~mL})$ was stirred for 8 h . The procedure was the same as for the synthesis of $\mathbf{1 0 a}$ to give $\mathbf{1 0}$ c in 89% yield. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 1.55-1.69$ (m, 6H, H-2", H-3", H-4"), 3.32 (m, 2H, H-5"), 3.86-4.05 (m, 2H, H-5'), 4.15-4.28 (m, 2H, $\left.\mathrm{H}-1^{\prime \prime}\right), 4.38\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.98\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{2}, \mathrm{H} 3^{\prime}}\right.$ $\left.=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.45\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{Hi}^{\prime}, \mathrm{H} 2^{\prime}}=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-2^{\prime}\right), 6.15\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 8.15,8.55$ (each s, each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8) .{ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 81 \mathrm{MHz}$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta$ $-9.72 \mathrm{ppm}\left(\mathrm{d}, J_{\mathrm{P}, \mathrm{P}}=10.1 \mathrm{~Hz}\right),-10.10 \mathrm{ppm}\left(\mathrm{d}, J_{\mathrm{P}, \mathrm{P}}=10.1 \mathrm{~Hz}\right)$. HRMS (ESI-TOF ${ }^{-}$) calcd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{P}_{2}\left[(\mathrm{M}-1)^{-}\right], 494.0842$; found, 494.0836.
N^{1}-[(6 $6^{\prime \prime}$-Hydroxyl)hexyl]-5'-O-TBDMS-2' $\mathbf{3}^{\prime}$ ' O-isopropylideneadenosine 3d. A mixture of $\mathbf{1}(486 \mathrm{mg}, 1.1 \mathrm{mmol}), \mathbf{2 d}(157 \mathrm{mg}$, $1.3 \mathrm{mmol})$, and $\mathrm{K}_{2} \mathrm{CO}_{3}(8 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{MeOH}(15 \mathrm{~mL})$ was stirred at room temperature for 4 h . The procedure was the same as for the synthesis of $\mathbf{3 a}$ to give $\mathbf{3 d}$ in 83% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- $\left.d_{6}\right) \delta 0.00\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right), 0.80\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\right.$), 1.31 ($\mathrm{s}, 3 \mathrm{H}$, isopropyl CH_{3}), 1.32-1.69 ($\mathrm{m}, 11 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}$, H-4", H-5", isopropyl CH_{3}), 3.34-3.38 (m, 2H, H-6"), 3.643.73 (m, 2H, H-5'), 3.92-4.08 (m, 2H, H-1"), 4.19-4.20 (m, 1H, $\left.\mathrm{H}-4^{\prime}\right), 4.32\left(\mathrm{t}, 1 \mathrm{H}, J_{\mathrm{H} 6^{\prime}, \mathrm{OH}}=4.5 \mathrm{~Hz}, \mathrm{OH}\right), 4.88\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H} 4^{\prime}}=\right.$ $\left.3.0 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.28\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{HI}^{\prime}, \mathrm{H} 2^{\prime}}=2.5 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.04\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{Hi}^{\prime}}=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 7.07$ (s, br, NH), 8.05,8.06 (each s, each 1H, H-2, H-8). ${ }^{13}$ C NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 154.5,147.3,141.2,136.7,123.9,114.1,91.2,87.0$, $85.3,81.3,63.5,62.5,47.7,32.5,29.7,28.6,27.2,26.3,25.9,25.2$,
18.3, $-5.4,-5.6$. ESI- TOF^{+}-MS: calcd for $\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}[(\mathrm{M}+$ 1) ${ }^{+}$], 522.3; found, 522.3. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{Si}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{1}-(6"'Monomethoxytrityloxyhexyl)-5'-O-TBDMS-2', $\mathbf{3}^{\prime}$ ' O-isopropylideneadenosine $\mathbf{4 d}$. A mixture of $\mathbf{3 d}(476 \mathrm{mg}, 0.9 \mathrm{mmol})$ and $\mathrm{MMTrCl}(557 \mathrm{mg}, 1.8 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ was stirred at room temperature for 8 h . The procedure was the same as for the synthesis of $\mathbf{4 a}$ to give $\mathbf{4 d}$ in 89% yield. ${ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 0.00\left(\mathrm{~s}, 6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{Si}\right), 0.86\left(\mathrm{~s}, 9 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C}-\right), 1.39(\mathrm{~s}$, 3 H , isopropyl CH_{3}), $1.45-1.78\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-5^{\prime \prime}\right.$, isopropyl CH_{3}), $3.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-6^{\prime \prime}\right), 3.78-3.83\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{H}-5^{\prime}, \mathrm{OCH}_{3}\right.$), 3.99-4.04 (m, 2H, H-1"), 4.39-4.40 (m, 1H, H-4'), 4.89 (dd, $\left.1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{2}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.10\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H} 2^{\prime}}\right.$ $\left.=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{2}, \mathrm{H}^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.92\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}\right.$, $\left.\mathrm{H}-1^{\prime}\right), 6.85-7.45(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.64,7.82$ (each s, each 1 H , $\mathrm{H}-2, \mathrm{H}-8) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 158.6, 154.1, 148.2, $145.3,138.0,136.3,129.2,128.3,127.5,126.6,114.1,112.9,94.3$, 86.1, 85.8, 83.6, 82.3, 63.5, 63.0, 54.9, 48.3, 28.8, 28.6, 28.0, 27.0, 26.7, 26.1, 25.6, 18.3, $-5.4,-5.6$. ESI-TOF + -MS: calcd for $\mathrm{C}_{45} \mathrm{H}_{59} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{Si}\left[(\mathrm{M}+1)^{+}\right]$, 795.4; found, 795.5. Anal. $\left(\mathrm{C}_{45} \mathrm{H}_{59} \mathrm{~N}_{5} \mathrm{O}_{6}-\right.$ Si) C, H, N.
N^{1}-($6^{\prime \prime}$-Monomethoxytrityloxyhexyl)-2', 3^{\prime} - O-isopropylideneadenosine 5d. A mixture of $\mathbf{4 d}(645 \mathrm{mg}, 0.80 \mathrm{mmol})$, TBAF (1 M in THF, $8.0 \mathrm{~mL}, 8.0 \mathrm{mmol}$), and $\mathrm{AcOH}(254 \mu \mathrm{~L}, 4.0 \mathrm{mmol})$ in THF (20 mL) was stirred at room temperature for 2 h . The procedure was the same as for the synthesis of $\mathbf{5 a}$ to give $\mathbf{5 d}$ in 90% yield. ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 1.35(\mathrm{~s}, 3 \mathrm{H}$, isopropyl CH_{3}), 1.39-1.78(m, 11H, H-2", $\mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-5^{\prime \prime}$, isopropyl CH_{3}), 3.02 (m, 2H, H-6"), 3.74-3.77 (dd, 1H, $J_{\mathrm{H} 4^{\prime}, \mathrm{H}^{\prime}{ }^{\prime} \mathrm{a}}=1.5 \mathrm{~Hz}, J_{\mathrm{H} 5^{\prime} \mathrm{b}, \mathrm{H} 5^{\prime} \mathrm{a}}$ $\left.=12.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime} \mathrm{a}\right), 3.78\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.92-3.95\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 4^{\prime}, \mathrm{H}^{\prime} \mathrm{b}}\right.$ $\left.=1.5 \mathrm{~Hz}, J_{\mathrm{H}^{\prime} \mathrm{b}, \mathrm{H} 5^{\prime} \mathrm{b}}=12.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime} \mathrm{b}\right), 3.99-4.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right)$, $4.48\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.98\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0\right.$ $\left.\mathrm{Hz}, \mathrm{H}-3^{\prime}\right), 5.12\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H1}^{\prime}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right)$, $5.79\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H1}^{\prime}}=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 6.81-7.44(\mathrm{~m}, 14 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, 7.67, 7.71 (each s, each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8$). ${ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 158.4,153.8,147.3,144.9,138.3,136.2,130.2,128.4$, 127.7, 126.7, 114.1, 112.9, 93.8, 86.0, 85.8, 83.6, 81.4, 63.2, 63.1, 55.2, 48.3, 28.9, 28.6, 27.6, 26.5, 26.0, 25.2. ESI-TOF ${ }^{+}$-MS: calcd for $\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{6}\left[(\mathrm{M}+1)^{+}\right]$, 680.3; found, 680.4. Anal. $\left(\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{6}\right)$ C, H, N.
N^{1}-($6^{\prime \prime}$-Monomethoxytrityloxyhexyl)- 5^{\prime}-O-[bis(phenylthio)-phosphoryl]-2', $\mathbf{3}^{\prime}-O$-isopropylideneadenosine 6 d . To a solution of $\mathbf{5 d}(489 \mathrm{mg}, 0.72 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ were added TPSCl ($437 \mathrm{mg}, 1.438 \mathrm{mmol}$), PSS ($820 \mathrm{mg}, 2.16 \mathrm{mmol}$), and tetrazole $(152 \mathrm{mg}, 2.16 \mathrm{mmol})$, and the mixture was stirred at room temperature for 12 h . The procedure was the same as for the synthesis of $\mathbf{6 a}$ to give $\mathbf{6 d}$ in 64% yield. ${ }^{1} \mathrm{H}$ NMR (500 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 1.32\left(\mathrm{~s}, 3 \mathrm{H}\right.$, isopropyl $\left.\mathrm{CH}_{3}\right), 1.42-1.79\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}-2^{\prime \prime}\right.$, $\mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}, \mathrm{H}-5^{\prime \prime}$, isopropyl CH_{3}), 3.15 (m, 2H, H-6"), 3.75-3.85 (m, 5H, H-5', OCH_{3}), 4.05-4.10 (m, 2H, H-1"), $4.45(\mathrm{~m}, 1 \mathrm{H}$, $\left.\mathrm{H}-4^{\prime}\right), 4.86\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.35$ (dd, $\left.1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.96(\mathrm{~d}, 1 \mathrm{H}$, $\left.J_{\mathrm{H}^{\prime}, \mathrm{H1}^{\prime}}=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 6.85-7.47(\mathrm{~m}, 24 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.69,7.75$ (each s, each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.3$, 154.1, 147.3, 145.2, 138.1, 136.0, 132.2, 129.9, 129.4, 129.1, 128.5, 128.2, 127.0, 125.6, 114.0, 112.6, 93.9, 86.5, 85.8, 83.3, 82.2, 63.6, 63.3, 56.1, 48.2, 29.0, 28.6, 28.2, 26.5, 26.0, 25.4. ${ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}$, 81 MHz , decoupled with ${ }^{1} \mathrm{H}$) $\delta 49.48 \mathrm{ppm}(\mathrm{s})$. ESI-TOF $^{+}-$MS: calcd for $\mathrm{C}_{51} \mathrm{H}_{54} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{PS}_{2}\left[(\mathrm{M}+1)^{+}\right]$, 944.3; found, 944.3. Anal. $\left(\mathrm{C}_{51} \mathrm{H}_{54} \mathrm{~N}_{5} \mathrm{O}_{7} \mathrm{PS}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{1}-[(6"'Hydroxyl)hexyl]-5'-O-[bis(phenylthio)phosphoryl]$\mathbf{2}^{\prime}, \mathbf{3}^{\prime}-\mathbf{O}$-isopropylideneadenosine 7 d . A solution of $\mathbf{6 d}(435 \mathrm{mg}$, 0.461 mmol) in 80% aqueous $\mathrm{AcOH}(10 \mathrm{~mL})$ was stirred at room temperature for 8 h . The procedure was the same as for the synthesis of 7a to give 7d in 82% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.36$ ($\mathrm{s}, 3 \mathrm{H}$, isopropyl CH_{3}), $1.38-1.75\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}, \mathrm{H}-4^{\prime \prime}\right.$, H-5"', isopropyl CH_{3}), 3.05 (m, 2H, H-6"), 3.78-3.86 (m, 2H, H-5'), $3.98-4.06\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.35\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 4.78\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}\right.$ $\left.=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.25\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H1} 1^{\prime} \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{H}^{2}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.86\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{2}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 6.89-$ $7.43(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.70,7.72$ (each s, each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8$). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 154.5, 147.4, 141.2, 136.7, 132.4, 129.5,
129.3, 125.8, 123.9, 114.1, 91.3, 87.0, 85.3, 81.4, 63.5, 62.5, 47.7, 32.5, 29.7, 28.7, 27.3, 25.9, 25.3. ${ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 81 \mathrm{MHz}$, decoupled with ${ }^{1} \mathrm{H}$) $\delta 49.50 \mathrm{ppm}$ (s) ESI-TOF ${ }^{+}$-MS: calcd for $\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{PS}_{2}\left[(\mathrm{M}+1)^{+}\right]$, 672.2; found, 672.2. Anal. $\left(\mathrm{C}_{31} \mathrm{H}_{38} \mathrm{~N}_{5} \mathrm{O}_{6}{ }^{-}\right.$ $\left.\mathrm{PS}_{2}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
N^{1}-($6^{\prime \prime}-$ Phosphonoxyhexyl) $-5^{\prime}-O-[($ phenylthio $)$ phosphoryl $]-$ $\mathbf{2}^{\prime}, \mathbf{3}^{\prime}$ - \boldsymbol{O}-isopropylideneadenosine $\mathbf{8 d}$. $\mathrm{POCl}_{3}(278 \mu \mathrm{~L}, 2.98 \mathrm{mmol})$ was added to a solution of $7 \mathbf{d}(200 \mathrm{mg}, 0.298 \mathrm{mmol})$ in $\mathrm{PO}(\mathrm{OMe})_{3}$ $(3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at the same temperature for 35 min . The following procedure was the same as for the synthesis of 8a to give $\mathbf{8 d}$ in 54% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 1.32$ (s, 3H, isopropyl CH_{3}), 1.48-1.80(m, $11 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}$, $\mathrm{H}-4^{\prime \prime}, \mathrm{H}-5^{\prime \prime}$, isopropyl CH_{3}), 3.35 (m, 2H, H-6"), 3.80-3.90 (m, $\left.2 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.03-4.08\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.55$ (m, 1H, H-4'), 4.99 (dd, $\left.1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.35\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H1}^{\prime}, \mathrm{H} 2^{\prime}}\right.$ $\left.=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{2}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.01\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{2}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}\right.$, H-1'), 6.90-7.48 (m, 5H, Ar-H), 8.25, 8.35 (each s, each $1 \mathrm{H}, \mathrm{H}-2$, $\mathrm{H}-8) .{ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 81 \mathrm{MHz}$, decoupled with ${ }^{1} \mathrm{H}$) $\delta 2.06 \mathrm{ppm}$ (s), $17.79 \mathrm{ppm}(\mathrm{s})$. HRMS (ESI-TOF ${ }^{-}$) calcd for $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{P}_{2} \mathrm{~S}$ $\left[(\mathrm{M}-1)^{-}\right], 658.1502$; found, 658.1496.
N^{1}-[($6^{\prime \prime}-O$-Phosphoryl)hexyl]-2', $3^{\prime}-O$-isopropylidene-5'-O-phosphoryladenosine $\mathbf{5}^{\prime}, \mathbf{5}^{\prime \prime}$-Cyclicpyrophosphate 9 d . A solution of $\mathbf{8 d}$ ($15 \mathrm{mg}, 22.8 \mu \mathrm{~mol}$) in pyridine (5 mL) was added slowly over 20 h , using a syringe pump, to a mixture of $\mathrm{AgNO}_{3}(82 \mathrm{mg}, 486 \mu \mathrm{~mol})$ and $3 \AA$ molecular sieves (1.98 g) in pyridine (50 mL) at room temperature in the dark. The procedure was the same as for the synthesis of 9a to give 9 d in 60% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 1.39$ (s, 3H, isopropyl CH_{3}), $1.50-1.79\left(\mathrm{~m}, 11 \mathrm{H}, \mathrm{H}-2^{\prime \prime}, \mathrm{H}-3^{\prime \prime}\right.$, H-4", H-5", isopropyl CH_{3}), 3.43 (m, 2H, H-6"), 3.85-3.94 (m, $\left.2 \mathrm{H}, \mathrm{H}-5^{\prime}\right), 4.10-4.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.58$ (m, 1H, H-4'), 5.08 (dd, $\left.1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}, J_{\mathrm{H} 2^{\prime}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.50\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H1}^{\prime}, \mathrm{H} 2^{\prime}}\right.$ $\left.=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{\prime}, \mathrm{H}^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.02\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{2}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}\right.$, $\mathrm{H}-1^{\prime}$), 8.25, 8.38 (each s, each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8$). ${ }^{31} \mathrm{P}$ NMR ($\mathrm{D}_{2} \mathrm{O}, 81$ MHz , decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta-9.99 \mathrm{ppm}\left(\mathrm{d}, J_{\mathrm{P}, \mathrm{P}}=10.0 \mathrm{~Hz}\right),-10.72$ ppm (d, $J_{\mathrm{P}, \mathrm{P}}=10.0 \mathrm{~Hz}$). HRMS (ESI-TOF ${ }^{-}$) calcd for $\mathrm{C}_{19} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{P}_{2}$ [$\left.(\mathrm{M}-1)^{-}\right]$, 548.1312; found, 548.1295.
N^{1}-[(6"'-O-Phosphoryl)hexyl]-5'-O-phosphoryladenosine $5^{\prime}, 5^{\prime \prime}-$ Cyclicpyrophosphate 10d. A solution of 9d ($7.5 \mathrm{mg}, 13.7 \mu \mathrm{~mol}$) in $60 \% \mathrm{HCOOH}(5 \mathrm{~mL})$ was stirred for 8 h . The procedure was the same as for the synthesis of 10a to give 10d in 90% yield. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) $\delta 1.48-1.76$ (m, 8H, H-2", H-3", H-4", H-5"), 3.48 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-6^{\prime \prime}$), 3.86-3.96 (m, 2H, H-5'), 4.15-4.18$\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{H}-1^{\prime \prime}\right), 4.62\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{H}-4^{\prime}\right), 5.05\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{H} 3^{\prime}, \mathrm{H} 4^{\prime}}=3.0 \mathrm{~Hz}\right.$, $\left.J_{\mathrm{H}^{2}, \mathrm{H} 3^{\prime}}=6.0 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.45\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{HI}^{\prime}, \mathrm{H}^{\prime}}=2.5 \mathrm{~Hz}, J_{\mathrm{H}^{2}, \mathrm{H} 3^{\prime}}=\right.$ $\left.6.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 6.05\left(\mathrm{~d}, 1 \mathrm{H}, J_{\mathrm{H}^{\prime}, \mathrm{HI}^{\prime}}=2.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 8.21,8.35$ (each s, each $1 \mathrm{H}, \mathrm{H}-2, \mathrm{H}-8) .{ }^{31} \mathrm{P}$ NMR $\left(\mathrm{D}_{2} \mathrm{O}, 81 \mathrm{MHz}\right.$, decoupled with $\left.{ }^{1} \mathrm{H}\right) \delta-9.75 \mathrm{ppm}\left(\mathrm{d}, J_{\mathrm{P}, \mathrm{P}}=10.5 \mathrm{~Hz}\right),-9.90 \mathrm{ppm}\left(\mathrm{d}, J_{\mathrm{P}, \mathrm{P}}=10.5\right.$ Hz). HRMS (ESI-TOF ${ }^{-}$) calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{10} \mathrm{P}_{2}\left[(\mathrm{M}-1)^{-}\right]$, 508.0999; found, 508.0988.

Pharmacology. Cell Culture. Jurkat T-lymphocytes (clone JMP) were cultured in RPMI 1640 medium supplemented with Glutamax I (2.06 mM), 25 mM HEPES, 110 units $/ \mathrm{mL}$ penicillin, $110 \mu \mathrm{~g} / \mathrm{mL}$ streptomycin, and $7.5 \% ~(\mathrm{v} / \mathrm{v})$ newborn calf serum (termed complete medium).

Loading of Cells with Fura2/AM. The cells (1×10^{7} cells) were centrifuged (room temperature, $1500 \mathrm{rpm}, 5 \mathrm{~min}$), and then the pellet was resuspended in 1 mL of fresh and warm ($37^{\circ} \mathrm{C}$) complete medium (see above). The cells were incubated for 5 min at $37{ }^{\circ} \mathrm{C}$. Then Fura 2-AM ($4 \mu \mathrm{~L}$ of a $1 \mathrm{mg} / \mathrm{mL}$ stock solution) was added, and the cells were incubated for 15 min in the dark. Subsequently another 4 mL of complete medium was added to the cell suspension and the cells were incubated for another 15 min at $37{ }^{\circ} \mathrm{C}$ in the dark. Then the cells were washed with Ca^{2+} measurement buffer ($140 \mathrm{mM} \mathrm{NaCl}, 5 \mathrm{mM} \mathrm{KCl}, 1 \mathrm{mM} \mathrm{MgSO} 4,1$ $\mathrm{mM} \mathrm{CaCl} 2,20 \mathrm{mM}$ HEPES, $1 \mathrm{mM} \mathrm{NaH} \mathrm{NO}_{4}, 5.5 \mathrm{mM}$ glucose, pH 7.4) twice, resuspended in 5 mL of Ca^{2+} measurement buffer, and kept in the dark at room temperature until use.

Determination of $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ in Intact Cells. $\left[\mathrm{Ca}^{2+}\right]_{\mathrm{i}}$ was analyzed in Fura2-loaded Jurkat T-lymphocytes. Changes in Fura2 fluorescence were measured using a Hitachi F-2000 spectrofluorometer operating in ratio mode (alternating excitation at 340 and 380 nm
and emission at 495 nm). To test any antagonist activity of the compounds, the cells in the cuvette (1×10^{6} cells) were preincubated with the compound $(500 \mathrm{mM})$ for 20 min before the start of the Ca^{2+} measurement. Anti-CD3 mAb OKT3 ($10 \mu \mathrm{~g} / \mathrm{mL}$ final concentration) was added to the cell suspension at a time point 200 s after the start of each measurement. To test any agonist effect of the compounds, each compound was added to the cell suspension at the 200 s time point and data were recorded for the next 700 s . To calibrate the Ca^{2+} determinations, Triton X-100 ($0.1 \% ~(\mathrm{v} / \mathrm{v})$) and EGTA/Tris ($12 \mathrm{mM} / 90 \mathrm{mM}$) were added sequentially at the end of each experiment.

Ratiometric $\mathbf{C a}^{2+}$ Imaging. Jurkat T-lymphocytes were loaded with Fura2/AM as described above. Imaging experiments were carried out on thin glass coverslips (0.1 mm) coated with bovine serum albumin ($5 \mathrm{mg} / \mathrm{mL}$) and poly-L-lysine ($1 \mathrm{mg} / \mathrm{mL}$). Silicon grease was used to seal a small chamber that consisted of a rubber O-ring on the glass coverslip. Then $70 \mu \mathrm{~L}$ of Ca^{2+} measurement buffer (composition see above) and $30 \mu \mathrm{~L}$ of cell suspension were added into the small chamber. The coverslip with cells attached to the bovine serum albumin/poly-L-lysine coating was mounted on the stage of a fluorescence microscope (Leica DM IRB2). An Improvision imaging system (Tübingen, Germany) consisting of a monochromator system (Polychromator IV, TILL Photonics, Graefelfing, Germany) and a gray-scale CCD camera (type C4742-95-12ER; Hamamatsu, Enfield, U.K.; operating in 8 -bit mode) built around the Leica microscope at 100 -fold magnification was used. Illumination was carried out at 340 and 380 nm alternatively. The acquisition rate was approximately one ratio per second for slow measurements and one ratio per 150 ms for fast measurements. Raw data were stored on a compact disk. Confocal images were obtained after deconvolution using the volume deconvolution module of Openlab software (Improvision). The removal of stray light was set to 0.7 . The deconvolved images were used to construct ratio images (340/ 380). Finally the ratio values were converted into Ca^{2+} concentrations by external calibration. Ratio images were subjected to a median filter (3×3). Data processing was performed using Openlab software, versions 4.0.2, 3.0.8, and 1.7.8 (Improvision).

Acknowledgment. This study was supported by the National Natural Sciences Foundation of China (Grant No. SFCBIC 20320130046 to L.-h.Z. and Grant No. 20472007 to L.Z.), the Ministry of Science and Technology of China (Grant Nos. 2004CB518904 and 2005BA711A04 to L.-h.Z.), the Research Fund for the Doctoral Program of Higher Education (Grant No. 20040001140 to L.Z.), the Deutsche Foschungsgemeinschaft (Grant Nos. GU 360/9-1 and 9-2 to A.H.G.), the Deutsche Akademische Austauschdienst (Grant No. 423/PPP-vrc-sr to A.H.G. and L.-h.Z.), and the Gemeinnützige Hertie-Stiftung (Grant No. 1.01.1/04/010 to A.H.G.).

Supporting Information Available: Elemental analysis data for 3-7 and charts of HPLC data for 10a-d. This material is available free of charge via the Internet at http://pubs.acs.org.

References

(1) Clapper, D. L.; Walseth, T. F.; Dargie, P. J.; Lee, H. C. Pyridine nucleotide metabolites stimulate calcium release from sea urchin egg microsomes desensitized to inositol trisphosphate. J. Biol. Chem. 1987, 262, 9561-9568.
(2) Rusinko, N.; Lee, H. C. Widespread occurrence in animal tissues of an enzyme catalyzing the conversion of NAD^{+}into a cyclic metabolite with intracellular Ca^{2+}-mobilizing activity. J. Biol. Chem. 1989, 264, 11725-11731.
(3) Lee, H. C. Multiplicity of Ca^{2+} messengers and Ca^{2+} stores: A perspective from cyclic ADP-ribose and NAADP. Curr. Mol. Med. 2004, 4, 227-237.
(4) Guse, A. H. Regulation of calcium signaling by the second messenger cyclic adenosine diphosphoribose (cADPR). Curr. Mol. Med. 2004, 4, 239-248.
(5) Walseth, T. F.; Lee, H. C. Synthesis and characterization of antagonists of cADPR-induced Ca^{2+} release. Biochim. Biophys. Acta 1993, 1178 (3), 235-242.
(6) Vu, C. Q.; Lu, P. J.; Chen, C. S.; Jacobson, M. K. 2'-Phospho-cyclic ADP-ribose, a calcium-mobilizing agent derived from NADP. J. Biol. Chem. 1996, 271, 4747-4754.
(7) Guse, A. H. 1-(5-Phospho-beta-D-ribosyl) 2'-phosphoadenosine 5'phosphate cyclic anhydride induced Ca^{2+} release in human T-cell lines. Eur. J. Biochem. 1997, 245 (2), 411-417.
(8) Ashamu, G. A.; Sethi, J. K.; Galione, A.; Potter, B. V. L. Roles for adenosine ribose hydroxyl groups in cyclic adenosine 5'-diphosphate ribose-mediated Ca^{2+} release. Biochemistry 1997, 36, 95099517.
(9) Guse, A. H.; CakirKiefer, C.; Fukuoka, M.; Shuto, S.; Weber, K.; Bailey, V.C.; Matsuda, A.; Mayr, G. W.; Oppenheimer, N.; Schuber, F.; Potter, B. V. L. Novel hydrolysis-resistant analogues of cyclic ADP-ribose: modification of the "northern" ribose and calcium release activity. Biochemistry 2002, 41 (21), 6744-6751.
(10) Zhang, F. J.; Yamada, S.; Gu, Q. M. Synthesis and characterization of cyclic ATP-ribose: A potent mediator of calcium release. Bioorg. Med. Chem. Lett. 1996, 6 (11), 1203-1208.
(11) Bailey, V. C.; Fortt, S. M.; Summerhill, R. J.; Galione, A.; Potter, B. V. L. Cyclic aristeromycin diphosphate ribose: a potent and poorly hydrolysable Ca^{2+}-mobilizing mimic of cyclic adenosine diphosphate ribose. FEBS Lett. 1996, 379, 227-230.
(12) Shuto, S.; Fukuoka, M.; Manikowasky, A.; Ueno, Y.; Nakano, T.; Kuroda, R.; Kuroda, H.; Matsuda, A. Total synthesis of cyclic ADP-carbocyclic-ribose, a stable mimic of Ca^{2+}-mobilizing second messenger cyclic ADP-ribose. J. Am. Chem. Soc. 2001, 123 (36), 87508759.
(13) Kudoh, T.; Fukuoka, M.; Ichikawa, S.; Murayama, T.; Ogawa, Y.; Hashii, M.; Higashida, H.; Kunerth, S.; Weber, K.; Guse, A. H.; Potter, B. V. L.; Matsuda, A.; Shuto, S. Synthesis of stable and celltype selective analogues of cyclic ADP-ribose, a Ca^{2+}-mobilizing second messenger. Structure-activity relationship of the N1-ribose moiety. J. Am. Chem. Soc. 2005, 127 (24), 8846-8855
(14) Huang, L. J.; Zhao, Y. Y.; Yuan, L.; Min, J. M.; Zhang, L. H. Syntheses and calcium mobilizing evaluations of N1-glycosyl substituted stable mimics of Cyclic ADP-ribose. J. Med. Chem. 2002, 45, 5340-5352.
(15) Gu, X. F.; Yang, Z. J.; Zhang, L. R.; Zhang, L. H. Synthesis and biological evaluation of novel membrane-permeant cyclic ADP-ribose mimics: N1-[(5"-O-phosphoryl-ethoxy)-methyl]-5'-O-phosphorylinosine $5^{\prime}, 5^{\prime \prime}$-cyclicpyrophosphate (cIDPRE) and 8 -substituted derivatives. J. Med. Chem. 2004, 47, 5674-5682.
(16) Wagner, G. K.; Guse, A. H.; Potter, B. V. L. Rapid synthetic route toward structurally modified derivatives of cyclic adenosine 5^{\prime} diphosphate ribose. J. Org. Chem. 2005, 70 (12), 4810-4819.
(17) Graeff, R. M.; Walseth, T. F.; Hill, H. K.; Lee, H. C. Fluorescent analogs of cyclic ADP-ribose: Synthesis, spectral characterization, and use. Biochemistry 1996, 35, (2), 379-386.
(18) Guse, A. H.; Gu, X. F.; Zhang, L. R.; Weber, K.; Zhang, L. H. A minimal structural analogue of cyclic ADP-ribose. J. Biol. Chem. 2005, 280, 15952-15959.
(19) Hutchinson, E. J.; Taylor, B. F.; Blackburn, G. M. Stereospecific synthesis of 1,9-bis(beta-D-glycosyl)adenines: a chemical route to stable analogues of cyclic-ADP ribose (cADPR). J. Chem. Soc., Chem. Commun. 1997, 1859-1860.
(20) Shuto, S.; Fukuoka, M.; Kudoh, T.; Garnham, C.; Galione, A.; Potter, B. V. L.; Matsuda, A. Convergent synthesis and unexpected Ca^{2+} mobilizing activity of 8 -substituted analogues of cyclic ADP-carbocyclic-ribose. A stable mimic of the Ca^{2+}-mobilizing second messenger cyclic ADP-ribose. J. Med. Chem. 2003, 46, 47414749.
(21) Yoshikawa, M.; Kato, T.; Takenishi, T. Study of phosphorylation. III. Selective phosphorylation of unprotected nucleotides. Bull. Chem. Soc. Jpn. 1969, 42, 3505-3508.
(22) Hata, T.; Kamimura, T. A new method for the synthesis of oligodeoxyribonucleotides bearing a 5^{\prime}-terminal phosphate group. Chem. Lett. 1987, 117-120.
(23) Guse, A. H. Ca^{2+} signaling in T-lymphocytes. Crit. Rev. Immunol. 1998, 18, 419-448.
(24) Guse, A. H. Biochemistry, biology, and pharmacology of cyclic adenosine diphosphoribose (cADPR). Curr. Med. Chem. 2004, 11, 847-855.
(25) Kunerth, S.; Mayr, G. W.; Koch-Nolte, F.; Guse, A. H. Analysis of subcellular calcium signals in T-lymphocytes. Cell. Signalling 2003, 15, 783-792.
(26) Kunerth, S.; Langhorst, M. F.; Schwarzmann, N.; Gu, X. F.; Huang, L. J.; Yang, Z. J.; Zhang, L. R.; Mills, S. J.; Zhang, L. H.; Potter, B. V. L.; Guse, A. H. Amplification and propagation of pacemaker Ca^{2+} signals by cyclic ADP-ribose and the type 3 ryanodine receptor in T cells. J. Cell Sci. 2004, 117, 2141-2149.
(27) Wagner, G. K.; Black, S.; Guse, A. H.; Potter, B. V. L. First enzymatic synthesis of an N1-cyclised cADPR (cyclic-ADP ribose)
analogue with a hypoxanthine partial structure: discovery of a membrane permeant cADPR agonist. Chem. Commun. 2003, 15, 1944-1945.
(28) Kirchberger, T.; Wagner, G.; Xu, J. F.; Cordiglieri, C.; Wang, P.; Gasser, A.; Fliegert, R.; Bruhn, S.; Flügel, A.; Lund, F. E. Zhang,
L. H.; Potter, B. V. L.; Guse, A. H. Cellular effects and metabolic stability of N1-cyclic inosine diphosphoribose and its devivatives. Br. J. Pharmacol., in press.

JM060320E

[^0]: * To whom correspondence should be addressed. For L.Z.: phone, 86-10-82802567; fax, 86-10-82802724; e-mail, liangren@bjmu.edu.cn. For L.h.Z.: phone, 86-10-82801700; fax, 86-10-82802724; e-mail, zdszlh@bjmu.edu.cn.
 \# Peking University.
 ${ }^{\dagger}$ University Medical Center Hamburg-Eppendorf.
 ${ }^{a}$ Abbreviations: cADPR, cyclic adenosine 5'-diphosphoribose; cIDPR, cyclic inosine 5'-diphosphoribose; cADPcR, cyclic adenosine 5'-diphosphocarboribose; cIDPRE, cyclic inosine diphosphoribose ether; cIDP-DE, cyclic inosine diphosphodiether; DMF, dimethylformamide; DMSO, dimethyl sulfoxide; EGTA, ethylene glycol bis(2-aminoethyl ether)tetraacetic acid; ESI, electrospray ionization; FAB, fast atom bombardment; ${ }^{1} \mathrm{H}$ NMR, proton nuclear magnetic resonance; ${ }^{13} \mathrm{C}$ NMR, carbon- 13 nuclear magnetic resonance; ${ }^{31} \mathrm{P}$ NMR, phosphorus-31 nuclear magnetic resonance; HMBC, heteronuclear multiple bond correlation; HR-FAB-MS, high-resolution fast atom bombardment mass spectrometry; HR-ESI-MS, high-resolution electrospray ionization mass spectrometry; HPLC, high-performance liquid chromatography; mAb, monoclonal antibody; MMTrCl , monomethoxytrityl chloride; PSS, cyclohexylammonium S, S-diphenylphosphorodithioate; TOF, time of flight; THF, tetrahydrofuran; Py, pyridine; TPSCl, triisopropylbenzenesulfonyl chloride; TBDMSCl, tert-butyldimethylsilyl chloride; TEAA, triethylammonium acetate; TEAB, triethylammonium bicarbonate; TBAF, tetrabutylammonium fluoride; TMS, tetramethyl silicane.

[^1]: ${ }^{a}$ Reagents and condictions: (a) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH , room temp; (b) MMTrCl, Py, room temp; (c) TBAF, THF, room temp; (d) PSS, TPSCl, tetrazole, room temp; (e) $80 \% \mathrm{AcOH}$, room temp; (f) $\mathrm{POCl}_{3}, \mathrm{PO}(\mathrm{OMe})_{3}, 0^{\circ} \mathrm{C}$; (g) $\mathrm{H}_{3} \mathrm{PO}_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{Py}$, room temp; (h) $\mathrm{AgNO}_{3}, 3 \AA$ molecular sieves, Py , room temp; (i) 60% HCOOH , room temp.

